Working…
This commit is contained in:
parent
ae3e64c83b
commit
5e244a732a
@ -382,3 +382,100 @@ lemma int₃
|
|||||||
simp at h₁a
|
simp at h₁a
|
||||||
simp
|
simp
|
||||||
linarith
|
linarith
|
||||||
|
|
||||||
|
|
||||||
|
lemma int₄
|
||||||
|
{a : ℂ}
|
||||||
|
{R : ℝ}
|
||||||
|
(hR : 0 < R)
|
||||||
|
(ha : a ∈ Metric.closedBall 0 R) :
|
||||||
|
∫ x in (0)..(2 * π), log ‖circleMap 0 R x - a‖ = (2 * π) * log R := by
|
||||||
|
|
||||||
|
have h₁a : a / R ∈ Metric.closedBall 0 1 := by
|
||||||
|
simp
|
||||||
|
simp at ha
|
||||||
|
sorry
|
||||||
|
|
||||||
|
have t₀ {x : ℝ} : circleMap 0 R x = R * circleMap 0 1 x := by
|
||||||
|
unfold circleMap
|
||||||
|
simp
|
||||||
|
|
||||||
|
have {x : ℝ} : circleMap 0 R x - a = R * (circleMap 0 1 x - (a / R)) := by
|
||||||
|
rw [t₀, mul_sub, mul_div_cancel₀]
|
||||||
|
rw [ne_eq, Complex.ofReal_eq_zero]
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
|
||||||
|
have {x : ℝ} : circleMap 0 R x ≠ a → log ‖circleMap 0 R x - a‖ = log R + log ‖circleMap 0 1 x - (a / R)‖ := by
|
||||||
|
intro hx
|
||||||
|
rw [this]
|
||||||
|
rw [norm_mul]
|
||||||
|
rw [log_mul]
|
||||||
|
congr
|
||||||
|
--
|
||||||
|
simp
|
||||||
|
exact le_of_lt hR
|
||||||
|
--
|
||||||
|
simp
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
--
|
||||||
|
simp
|
||||||
|
rw [t₀] at hx
|
||||||
|
by_contra hCon
|
||||||
|
rw [hCon] at hx
|
||||||
|
simp at hx
|
||||||
|
rw [mul_div_cancel₀] at hx
|
||||||
|
tauto
|
||||||
|
simp
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
|
||||||
|
have : ∫ x in (0)..(2 * π), log ‖circleMap 0 R x - a‖ = ∫ x in (0)..(2 * π), log R + log ‖circleMap 0 1 x - (a / R)‖ := by
|
||||||
|
rw [intervalIntegral.integral_congr_ae]
|
||||||
|
rw [MeasureTheory.ae_iff]
|
||||||
|
apply Set.Countable.measure_zero
|
||||||
|
let A := (circleMap 0 R)⁻¹' { a }
|
||||||
|
have s₀ : {a_1 | ¬(a_1 ∈ Ι 0 (2 * π) → log ‖circleMap 0 R a_1 - a‖ = log R + log ‖circleMap 0 1 a_1 - a / ↑R‖)} ⊆ A := by
|
||||||
|
intro x
|
||||||
|
contrapose
|
||||||
|
intro hx
|
||||||
|
unfold A at hx
|
||||||
|
simp at hx
|
||||||
|
simp
|
||||||
|
intro h₂x
|
||||||
|
let B := this hx
|
||||||
|
simp at B
|
||||||
|
rw [B]
|
||||||
|
have s₁ : A.Countable := by
|
||||||
|
apply Set.Countable.preimage_circleMap
|
||||||
|
exact Set.countable_singleton a
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
exact Set.Countable.mono s₀ s₁
|
||||||
|
|
||||||
|
rw [this]
|
||||||
|
rw [intervalIntegral.integral_add]
|
||||||
|
rw [int₃]
|
||||||
|
rw [intervalIntegral.integral_const]
|
||||||
|
simp
|
||||||
|
--
|
||||||
|
exact h₁a
|
||||||
|
--
|
||||||
|
apply intervalIntegral.intervalIntegrable_const
|
||||||
|
--
|
||||||
|
by_cases h₂a : Complex.abs (a / R) = 1
|
||||||
|
· exact int'₂ h₂a
|
||||||
|
· apply int'₀
|
||||||
|
simp
|
||||||
|
simp at h₁a
|
||||||
|
rw [lt_iff_le_and_ne]
|
||||||
|
constructor
|
||||||
|
· exact h₁a
|
||||||
|
· rw [← Complex.norm_eq_abs, ← norm_eq_abs]
|
||||||
|
refine div_ne_one_of_ne ?_
|
||||||
|
rw [← Complex.norm_eq_abs, norm_div] at h₂a
|
||||||
|
by_contra hCon
|
||||||
|
rw [hCon] at h₂a
|
||||||
|
simp at h₂a
|
||||||
|
have : |R| ≠ 0 := by
|
||||||
|
simp
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
rw [div_self this] at h₂a
|
||||||
|
tauto
|
||||||
|
Loading…
Reference in New Issue
Block a user