Working…

This commit is contained in:
Stefan Kebekus 2024-12-05 07:12:32 +01:00
parent ae3e64c83b
commit 5e244a732a

View File

@ -382,3 +382,100 @@ lemma int₃
simp at h₁a simp at h₁a
simp simp
linarith linarith
lemma int₄
{a : }
{R : }
(hR : 0 < R)
(ha : a ∈ Metric.closedBall 0 R) :
∫ x in (0)..(2 * π), log ‖circleMap 0 R x - a‖ = (2 * π) * log R := by
have h₁a : a / R ∈ Metric.closedBall 0 1 := by
simp
simp at ha
sorry
have t₀ {x : } : circleMap 0 R x = R * circleMap 0 1 x := by
unfold circleMap
simp
have {x : } : circleMap 0 R x - a = R * (circleMap 0 1 x - (a / R)) := by
rw [t₀, mul_sub, mul_div_cancel₀]
rw [ne_eq, Complex.ofReal_eq_zero]
exact Ne.symm (ne_of_lt hR)
have {x : } : circleMap 0 R x ≠ a → log ‖circleMap 0 R x - a‖ = log R + log ‖circleMap 0 1 x - (a / R)‖ := by
intro hx
rw [this]
rw [norm_mul]
rw [log_mul]
congr
--
simp
exact le_of_lt hR
--
simp
exact Ne.symm (ne_of_lt hR)
--
simp
rw [t₀] at hx
by_contra hCon
rw [hCon] at hx
simp at hx
rw [mul_div_cancel₀] at hx
tauto
simp
exact Ne.symm (ne_of_lt hR)
have : ∫ x in (0)..(2 * π), log ‖circleMap 0 R x - a‖ = ∫ x in (0)..(2 * π), log R + log ‖circleMap 0 1 x - (a / R)‖ := by
rw [intervalIntegral.integral_congr_ae]
rw [MeasureTheory.ae_iff]
apply Set.Countable.measure_zero
let A := (circleMap 0 R)⁻¹' { a }
have s₀ : {a_1 | ¬(a_1 ∈ Ι 0 (2 * π) → log ‖circleMap 0 R a_1 - a‖ = log R + log ‖circleMap 0 1 a_1 - a / ↑R‖)} ⊆ A := by
intro x
contrapose
intro hx
unfold A at hx
simp at hx
simp
intro h₂x
let B := this hx
simp at B
rw [B]
have s₁ : A.Countable := by
apply Set.Countable.preimage_circleMap
exact Set.countable_singleton a
exact Ne.symm (ne_of_lt hR)
exact Set.Countable.mono s₀ s₁
rw [this]
rw [intervalIntegral.integral_add]
rw [int₃]
rw [intervalIntegral.integral_const]
simp
--
exact h₁a
--
apply intervalIntegral.intervalIntegrable_const
--
by_cases h₂a : Complex.abs (a / R) = 1
· exact int'₂ h₂a
· apply int'₀
simp
simp at h₁a
rw [lt_iff_le_and_ne]
constructor
· exact h₁a
· rw [← Complex.norm_eq_abs, ← norm_eq_abs]
refine div_ne_one_of_ne ?_
rw [← Complex.norm_eq_abs, norm_div] at h₂a
by_contra hCon
rw [hCon] at h₂a
simp at h₂a
have : |R| ≠ 0 := by
simp
exact Ne.symm (ne_of_lt hR)
rw [div_self this] at h₂a
tauto