Update complexHarmonic.lean
This commit is contained in:
parent
631b1bad70
commit
5ce2b83c20
|
@ -5,6 +5,12 @@ import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||||
|
import Mathlib.Data.Complex.Module
|
||||||
|
import Mathlib.Data.Complex.Order
|
||||||
|
import Mathlib.Data.Complex.Exponential
|
||||||
|
import Mathlib.Analysis.RCLike.Basic
|
||||||
|
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||||
|
import Mathlib.Topology.Instances.RealVectorSpace
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
import Nevanlinna.partialDeriv
|
import Nevanlinna.partialDeriv
|
||||||
|
|
||||||
|
@ -40,18 +46,35 @@ theorem holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ f) :
|
||||||
unfold Complex.laplace
|
unfold Complex.laplace
|
||||||
rw [CauchyRiemann₄ h]
|
rw [CauchyRiemann₄ h]
|
||||||
|
|
||||||
let l : ℂ →L[ℝ] ℂ := by
|
have : ∀ v, ∀ s : ℂ, ∀ g : ℂ → ℂ, Differentiable ℝ g → Real.partialDeriv v (s • g) = s • (Real.partialDeriv v g) := by
|
||||||
--
|
intro v s g hg
|
||||||
sorry --(fun x ↦ Complex.I • x)
|
|
||||||
have : (Complex.I • Real.partialDeriv 1 f) = (l ∘ (Real.partialDeriv 1 f)) := by
|
let sMuls : ℂ →L[ℝ] ℂ :=
|
||||||
sorry
|
{
|
||||||
|
toFun := fun x ↦ s * x
|
||||||
|
map_add' := by
|
||||||
|
intro x y
|
||||||
|
ring
|
||||||
|
map_smul' := by
|
||||||
|
intro m x
|
||||||
|
simp
|
||||||
|
ring
|
||||||
|
}
|
||||||
|
|
||||||
|
have : s • g = sMuls ∘ g := by rfl
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [partialDeriv_compContLin]
|
rw [partialDeriv_compContLin hg]
|
||||||
|
rfl
|
||||||
--rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
|
||||||
|
|
||||||
|
rw [this]
|
||||||
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
rw [partialDeriv_comm f_is_real_C2 Complex.I 1]
|
||||||
rw [CauchyRiemann₄ h]
|
rw [CauchyRiemann₄ h]
|
||||||
rw [partialDeriv_smul₂ fI_is_real_differentiable]
|
rw [this]
|
||||||
rw [← smul_assoc]
|
rw [← smul_assoc]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
-- Subgoals coming from the application of 'this'
|
||||||
|
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||||
|
exact fI_is_real_differentiable
|
||||||
|
-- Differentiable ℝ (Real.partialDeriv 1 f)
|
||||||
|
exact fI_is_real_differentiable
|
||||||
|
|
Loading…
Reference in New Issue