Add file
This commit is contained in:
parent
ff00a0db82
commit
5bd004d653
104
Nevanlinna/diffOp.lean
Normal file
104
Nevanlinna/diffOp.lean
Normal file
@ -0,0 +1,104 @@
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
||||
import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||
|
||||
/-
|
||||
|
||||
Let E, F, G be vector spaces over nontrivally normed field 𝕜, a homogeneus
|
||||
linear differential operator of order n is a map that attaches to every point e
|
||||
of E a linear evaluation
|
||||
|
||||
{Continuous 𝕜-multilinear maps E → F in n variables} → G
|
||||
|
||||
In other words, homogeneus linear differential operator of order n is an
|
||||
instance of the type:
|
||||
|
||||
D : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
|
||||
|
||||
Given any map f : E → F, one obtains a map D f : E → G by sending a point e to
|
||||
the evaluation (D e), applied to the n.th derivative of f at e
|
||||
|
||||
fun e ↦ D e (iteratedFDeriv 𝕜 n f e)
|
||||
|
||||
-/
|
||||
|
||||
@[ext]
|
||||
class HomLinDiffOp
|
||||
(𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||
(n : ℕ)
|
||||
(E : Type*) [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
(F : Type*) [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||||
(G : Type*) [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||||
where
|
||||
tensorfield : E → ( E [×n]→L[𝕜] F) →L[𝕜] G
|
||||
-- tensorfield : E → (ContinuousMultilinearMap 𝕜 (fun _ : Fin n ↦ E) F) →ₗ[𝕜] G
|
||||
|
||||
|
||||
namespace HomLinDiffOp
|
||||
|
||||
noncomputable def toFun
|
||||
{𝕜 : Type*} [NontriviallyNormedField 𝕜]
|
||||
{n : ℕ}
|
||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F]
|
||||
{G : Type*} [NormedAddCommGroup G] [NormedSpace 𝕜 G]
|
||||
(o : HomLinDiffOp 𝕜 n E F G)
|
||||
: (E → F) → (E → G) :=
|
||||
fun f z ↦ o.tensorfield z (iteratedFDeriv 𝕜 n f z)
|
||||
|
||||
|
||||
noncomputable def Laplace
|
||||
{𝕜 : Type*} [RCLike 𝕜]
|
||||
{n : ℕ}
|
||||
: HomLinDiffOp 𝕜 2 (EuclideanSpace 𝕜 (Fin n)) 𝕜 𝕜
|
||||
where
|
||||
tensorfield := by
|
||||
intro _
|
||||
|
||||
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
|
||||
rw [finrank_euclideanSpace_fin] at v
|
||||
|
||||
exact {
|
||||
toFun := fun f' ↦ ∑ i, f' ![v i, v i]
|
||||
map_add' := by
|
||||
intro f₁ f₂
|
||||
exact Finset.sum_add_distrib
|
||||
map_smul' := by
|
||||
intro m f
|
||||
exact Eq.symm (Finset.mul_sum Finset.univ (fun i ↦ f ![v i, v i]) m)
|
||||
cont := by
|
||||
simp
|
||||
apply continuous_finset_sum
|
||||
intro i _
|
||||
exact ContinuousMultilinearMap.continuous_eval_const ![v i, v i]
|
||||
}
|
||||
|
||||
|
||||
noncomputable def Gradient
|
||||
{𝕜 : Type*} [RCLike 𝕜]
|
||||
{n : ℕ}
|
||||
: HomLinDiffOp 𝕜 1 (EuclideanSpace 𝕜 (Fin n)) 𝕜 (EuclideanSpace 𝕜 (Fin n))
|
||||
where
|
||||
tensorfield := by
|
||||
intro _
|
||||
|
||||
let v := stdOrthonormalBasis 𝕜 (EuclideanSpace 𝕜 (Fin n))
|
||||
rw [finrank_euclideanSpace_fin] at v
|
||||
|
||||
exact {
|
||||
toFun := fun f' ↦ ∑ i, (f' ![v i]) • (v i)
|
||||
map_add' := by
|
||||
intro f₁ f₂
|
||||
simp; simp_rw [add_smul, Finset.sum_add_distrib]
|
||||
map_smul' := by
|
||||
intro m f
|
||||
simp; simp_rw [Finset.smul_sum, ←smul_assoc,smul_eq_mul]
|
||||
cont := by
|
||||
simp
|
||||
apply continuous_finset_sum
|
||||
intro i _
|
||||
apply Continuous.smul
|
||||
exact ContinuousMultilinearMap.continuous_eval_const ![v i]
|
||||
exact continuous_const
|
||||
}
|
||||
|
||||
end HomLinDiffOp
|
Loading…
Reference in New Issue
Block a user