Done with examples for holomorphicAt
This commit is contained in:
parent
50d0bead78
commit
52abf9b79b
|
@ -1,27 +1,9 @@
|
|||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.Analysis.RCLike.Basic
|
||||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||
import Mathlib.Data.Complex.Module
|
||||
import Mathlib.Data.Complex.Order
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Defs.Filter
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.laplace
|
||||
import Nevanlinna.complexHarmonic
|
||||
import Nevanlinna.holomorphic
|
||||
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
||||
|
||||
|
||||
theorem holomorphicAt_is_harmonicAt
|
||||
|
@ -93,6 +75,18 @@ theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
|||
(h₂f : f z ≠ 0) :
|
||||
HarmonicAt (Real.log ∘ Complex.normSq ∘ f) z := by
|
||||
|
||||
-- For later use
|
||||
have slitPlaneLemma {z : ℂ} (hz : z ≠ 0) : z ∈ Complex.slitPlane ∨ -z ∈ Complex.slitPlane := by
|
||||
rw [Complex.mem_slitPlane_iff, Complex.mem_slitPlane_iff]
|
||||
simp at hz
|
||||
rw [Complex.ext_iff] at hz
|
||||
push_neg at hz
|
||||
simp at hz
|
||||
simp
|
||||
by_contra contra
|
||||
push_neg at contra
|
||||
exact hz (le_antisymm contra.1.1 contra.2.1) contra.1.2
|
||||
|
||||
-- First prove the theorem for functions with image in the slitPlane
|
||||
have lem₁ : ∀ g : ℂ → ℂ, (HolomorphicAt g z) → (g z ≠ 0) → (g z ∈ Complex.slitPlane) → HarmonicAt (Real.log ∘ Complex.normSq ∘ g) z := by
|
||||
intro g h₁g h₂g h₃g
|
||||
|
@ -137,10 +131,44 @@ theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
|||
simp
|
||||
apply hx.2
|
||||
|
||||
-- Locally around z, rewrite Complex.log (g * gc) as Complex.log g + Complex.log.gc
|
||||
-- This uses the assumption that g z is in Complex.slitPlane
|
||||
have : (Complex.log ∘ (Complex.conjCLE ∘ g * g)) =ᶠ[nhds z] (Complex.conjCLE ∘ Complex.log ∘ g + Complex.log ∘ g) := by
|
||||
apply Filter.eventuallyEq_iff_exists_mem.2
|
||||
use g⁻¹' (Complex.slitPlane ∩ {0}ᶜ)
|
||||
constructor
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
· exact (HolomorphicAt_differentiableAt h₁g).continuousAt
|
||||
· apply IsOpen.mem_nhds
|
||||
apply IsOpen.inter Complex.isOpen_slitPlane isOpen_ne
|
||||
constructor
|
||||
· exact h₃g
|
||||
· exact h₂g
|
||||
· intro x hx
|
||||
simp
|
||||
rw [← Complex.log_conj]
|
||||
rw [Complex.log_mul_eq_add_log_iff _ hx.2]
|
||||
rw [Complex.arg_conj]
|
||||
simp [Complex.slitPlane_arg_ne_pi hx.1]
|
||||
constructor
|
||||
· exact Real.pi_pos
|
||||
· exact Real.pi_nonneg
|
||||
simp
|
||||
apply hx.2
|
||||
apply Complex.slitPlane_arg_ne_pi hx.1
|
||||
|
||||
rw [HarmonicAt_eventuallyEq this]
|
||||
apply harmonicAt_add_harmonicAt_is_harmonicAt
|
||||
·
|
||||
sorry
|
||||
· rw [← harmonicAt_iff_comp_CLE_is_harmonicAt]
|
||||
apply holomorphicAt_is_harmonicAt
|
||||
apply HolomorphicAt_comp
|
||||
use Complex.slitPlane
|
||||
constructor
|
||||
· apply IsOpen.mem_nhds
|
||||
exact Complex.isOpen_slitPlane
|
||||
assumption
|
||||
· exact fun z a => Complex.differentiableAt_log a
|
||||
exact h₁g
|
||||
· apply holomorphicAt_is_harmonicAt
|
||||
apply HolomorphicAt_comp
|
||||
use Complex.slitPlane
|
||||
|
@ -149,78 +177,16 @@ theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
|||
exact Complex.isOpen_slitPlane
|
||||
assumption
|
||||
· exact fun z a => Complex.differentiableAt_log a
|
||||
exact h₁g
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
assumption
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
-- Suffices to show Harmonic (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f + Complex.log ∘ f)
|
||||
-- THIS IS WHERE WE USE h₃
|
||||
have : (Complex.log ∘ (Complex.conjCLE ∘ f * f)) z = (Complex.log ∘ Complex.conjCLE ∘ f + Complex.log ∘ f) z := by
|
||||
unfold Function.comp
|
||||
simp
|
||||
rw [Complex.log_mul_eq_add_log_iff]
|
||||
|
||||
have : Complex.arg ((starRingEnd ℂ) (f z)) = - Complex.arg (f z) := by
|
||||
rw [Complex.arg_conj]
|
||||
have : ¬ Complex.arg (f z) = Real.pi := by
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||||
simp
|
||||
tauto
|
||||
by_cases h₃f : f z ∈ Complex.slitPlane
|
||||
· exact lem₁ f h₁f h₂f h₃f
|
||||
· have : Complex.normSq ∘ f = Complex.normSq ∘ (-f) := by funext; simp
|
||||
rw [this]
|
||||
simp
|
||||
constructor
|
||||
· exact Real.pi_pos
|
||||
· exact Real.pi_nonneg
|
||||
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z hz)
|
||||
exact h₂ z hz
|
||||
|
||||
rw [HarmonicOn_congr hs this]
|
||||
simp
|
||||
|
||||
apply harmonicOn_add_harmonicOn_is_harmonicOn hs
|
||||
|
||||
have : (fun x => Complex.log ((starRingEnd ℂ) (f x))) = (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) := by
|
||||
rfl
|
||||
rw [this]
|
||||
|
||||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||||
have : ∀ z ∈ s, (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) z = (Complex.conjCLE ∘ Complex.log ∘ f) z := by
|
||||
intro z hz
|
||||
unfold Function.comp
|
||||
rw [Complex.log_conj]
|
||||
rfl
|
||||
exact Complex.slitPlane_arg_ne_pi (h₃ z hz)
|
||||
rw [HarmonicOn_congr hs this]
|
||||
|
||||
rw [← harmonicOn_iff_comp_CLE_is_harmonicOn]
|
||||
|
||||
apply holomorphicOn_is_harmonicOn
|
||||
exact hs
|
||||
|
||||
intro z hz
|
||||
apply DifferentiableAt.differentiableWithinAt
|
||||
apply DifferentiableAt.comp
|
||||
|
||||
|
||||
|
||||
exact Complex.differentiableAt_log (h₃ z hz)
|
||||
apply DifferentiableOn.differentiableAt h₁ -- (h₁ z hz)
|
||||
exact IsOpen.mem_nhds hs hz
|
||||
exact hs
|
||||
|
||||
-- HarmonicOn (Complex.log ∘ ⇑(starRingEnd ℂ) ∘ f) s
|
||||
apply holomorphicOn_is_harmonicOn hs
|
||||
exact DifferentiableOn.clog h₁ h₃
|
||||
apply lem₁ (-f)
|
||||
· exact HolomorphicAt_neg h₁f
|
||||
· simpa
|
||||
· exact (slitPlaneLemma h₂f).resolve_left h₃f
|
||||
|
||||
|
||||
theorem holomorphic_is_harmonic {f : ℂ → F₁} (h : Differentiable ℂ f) :
|
||||
|
|
|
@ -1,21 +1,5 @@
|
|||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Complex.TaylorSeries
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||
import Mathlib.Analysis.RCLike.Basic
|
||||
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
|
||||
import Mathlib.Data.Complex.Module
|
||||
import Mathlib.Data.Complex.Order
|
||||
import Mathlib.Data.Complex.Exponential
|
||||
import Mathlib.Data.Fin.Tuple.Basic
|
||||
import Mathlib.Topology.Algebra.InfiniteSum.Module
|
||||
import Mathlib.Topology.Defs.Filter
|
||||
import Mathlib.Topology.Instances.RealVectorSpace
|
||||
import Nevanlinna.cauchyRiemann
|
||||
import Nevanlinna.laplace
|
||||
import Nevanlinna.complexHarmonic
|
||||
|
||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
||||
|
@ -28,7 +12,8 @@ def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
|||
theorem HolomorphicAt_iff
|
||||
{f : E → F}
|
||||
{x : E} :
|
||||
HolomorphicAt f x ↔ ∃ s : Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt ℂ f z) := by
|
||||
HolomorphicAt f x ↔ ∃ s :
|
||||
Set E, IsOpen s ∧ x ∈ s ∧ (∀ z ∈ s, DifferentiableAt ℂ f z) := by
|
||||
constructor
|
||||
· intro hf
|
||||
obtain ⟨t, h₁t, h₂t⟩ := hf
|
||||
|
@ -104,6 +89,21 @@ theorem HolomorphicAt_comp
|
|||
exact hx.1
|
||||
|
||||
|
||||
theorem HolomorphicAt_neg
|
||||
{f : E → F}
|
||||
{z : E}
|
||||
(hf : HolomorphicAt f z) :
|
||||
HolomorphicAt (-f) z := by
|
||||
obtain ⟨UF, h₁UF, h₂UF⟩ := hf
|
||||
use UF
|
||||
constructor
|
||||
· assumption
|
||||
· intro z hz
|
||||
apply differentiableAt_neg_iff.mp
|
||||
simp
|
||||
exact h₂UF z hz
|
||||
|
||||
|
||||
theorem HolomorphicAt_contDiffAt
|
||||
{f : ℂ → F}
|
||||
{z : ℂ}
|
||||
|
|
Loading…
Reference in New Issue