working
This commit is contained in:
parent
32f0bdf6e1
commit
513c122036
|
@ -15,6 +15,51 @@ def StronglyMeromorphicAt
|
|||
(∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z))
|
||||
|
||||
|
||||
lemma stronglyMeromorphicAt_of_mul_analytic'
|
||||
{f g : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h₁g : AnalyticAt ℂ g z₀)
|
||||
(h₂g : g z₀ ≠ 0) :
|
||||
StronglyMeromorphicAt f z₀ → StronglyMeromorphicAt (f * g) z₀ := by
|
||||
|
||||
intro hf
|
||||
--unfold StronglyMeromorphicAt at hf
|
||||
rcases hf with h₁f|h₁f
|
||||
· left
|
||||
rw [eventually_nhds_iff] at h₁f
|
||||
obtain ⟨t, ht⟩ := h₁f
|
||||
rw [eventually_nhds_iff]
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
simp
|
||||
left
|
||||
exact ht.1 y hy
|
||||
· exact ht.2
|
||||
· right
|
||||
obtain ⟨n, g_f, h₁g_f, h₂g_f, h₃g_f⟩ := h₁f
|
||||
use n
|
||||
use g * g_f
|
||||
constructor
|
||||
· apply AnalyticAt.mul
|
||||
exact h₁g
|
||||
exact h₁g_f
|
||||
· constructor
|
||||
· simp
|
||||
exact ⟨h₂g, h₂g_f⟩
|
||||
· rw [eventually_nhds_iff] at h₃g_f
|
||||
obtain ⟨t, ht⟩ := h₃g_f
|
||||
rw [eventually_nhds_iff]
|
||||
use t
|
||||
constructor
|
||||
· intro y hy
|
||||
simp
|
||||
rw [ht.1]
|
||||
simp
|
||||
ring
|
||||
exact hy
|
||||
· exact ht.2
|
||||
|
||||
|
||||
/- Strongly MeromorphicAt is Meromorphic -/
|
||||
theorem StronglyMeromorphicAt.meromorphicAt
|
||||
|
@ -125,6 +170,35 @@ theorem stronglyMeromorphicAt_congr
|
|||
assumption
|
||||
|
||||
|
||||
theorem stronglyMeromorphicAt_of_mul_analytic
|
||||
{f g : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
(h₁g : AnalyticAt ℂ g z₀)
|
||||
(h₂g : g z₀ ≠ 0) :
|
||||
StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt (f * g) z₀ := by
|
||||
constructor
|
||||
· apply stronglyMeromorphicAt_of_mul_analytic' h₁g h₂g
|
||||
· intro hprod
|
||||
let g' := fun z ↦ (g z)⁻¹
|
||||
have h₁g' := h₁g.inv h₂g
|
||||
have h₂g' : g' z₀ ≠ 0 := by
|
||||
exact inv_ne_zero h₂g
|
||||
|
||||
let B := stronglyMeromorphicAt_of_mul_analytic' h₁g' h₂g' (f := f * g) hprod
|
||||
have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by
|
||||
unfold Filter.EventuallyEq
|
||||
apply Filter.eventually_iff_exists_mem.mpr
|
||||
use g⁻¹' {0}ᶜ
|
||||
constructor
|
||||
· apply ContinuousAt.preimage_mem_nhds
|
||||
exact AnalyticAt.continuousAt h₁g
|
||||
exact compl_singleton_mem_nhds_iff.mpr h₂g
|
||||
· intro y hy
|
||||
simp at hy
|
||||
simp [hy]
|
||||
rwa [stronglyMeromorphicAt_congr this]
|
||||
|
||||
|
||||
theorem StronglyMeromorphicAt.order_eq_zero_iff
|
||||
{f : ℂ → ℂ}
|
||||
{z₀ : ℂ}
|
||||
|
|
|
@ -14,10 +14,10 @@ theorem MeromorphicOn.decompose₁
|
|||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{z₀ : ℂ}
|
||||
(hz₀ : z₀ ∈ U)
|
||||
(h₁f : MeromorphicOn f U)
|
||||
(h₂f : StronglyMeromorphicAt f z₀)
|
||||
(h₃f : h₂f.meromorphicAt.order ≠ ⊤) :
|
||||
(h₃f : h₂f.meromorphicAt.order ≠ ⊤)
|
||||
(hz₀ : z₀ ∈ U) :
|
||||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||
∧ (AnalyticAt ℂ g z₀)
|
||||
∧ (g z₀ ≠ 0)
|
||||
|
@ -146,14 +146,42 @@ theorem MeromorphicOn.decompose₁
|
|||
theorem MeromorphicOn.decompose₂
|
||||
{f : ℂ → ℂ}
|
||||
{U : Set ℂ}
|
||||
{P : Finset ℂ}
|
||||
(hP : P.toSet ⊆ U)
|
||||
(h₁f : MeromorphicOn f U)
|
||||
(h₂f : ∀ hp : p ∈ P, StronglyMeromorphicAt f p)
|
||||
(h₃f : ∀ hp : p ∈ P, (h₂f hp).meromorphicAt.order ≠ ⊤) :
|
||||
{P : Finset U}
|
||||
(hf : StronglyMeromorphicOn f U) :
|
||||
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
||||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||
∧ (∀ p ∈ P, AnalyticAt ℂ g p)
|
||||
∧ (∀ p ∈ P, g p ≠ 0)
|
||||
∧ (f = g * ∏ p ∈ P, fun z ↦ (z - p) ^ (h₁f.divisor p)) := by
|
||||
∧ (∀ p : P, AnalyticAt ℂ g p)
|
||||
∧ (∀ p : P, g p ≠ 0)
|
||||
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by
|
||||
|
||||
apply Finset.induction (p := fun (P : Finset U) ↦
|
||||
(∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) →
|
||||
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||
∧ (∀ p : P, AnalyticAt ℂ g p)
|
||||
∧ (∀ p : P, g p ≠ 0)
|
||||
∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)))
|
||||
|
||||
-- case empty
|
||||
simp
|
||||
exact hf.meromorphicOn
|
||||
|
||||
-- case insert
|
||||
intro u P hu iHyp
|
||||
intro hOrder
|
||||
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp))
|
||||
|
||||
have h₅g₀ : StronglyMeromorphicAt g₀ u := by
|
||||
|
||||
sorry
|
||||
have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by
|
||||
sorry
|
||||
|
||||
obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2
|
||||
use g
|
||||
· constructor
|
||||
· exact h₁g
|
||||
· constructor
|
||||
· sorry
|
||||
· constructor
|
||||
· sorry
|
||||
· sorry
|
||||
|
|
Loading…
Reference in New Issue