working
This commit is contained in:
		| @@ -15,6 +15,51 @@ def StronglyMeromorphicAt | ||||
|   (∀ᶠ (z : ℂ) in nhds z₀, f z = 0) ∨ (∃ (n : ℤ), ∃ g : ℂ → ℂ, (AnalyticAt ℂ g z₀) ∧ (g z₀ ≠ 0) ∧ (∀ᶠ (z : ℂ) in nhds z₀, f z = (z - z₀) ^ n • g z)) | ||||
|  | ||||
|  | ||||
| lemma stronglyMeromorphicAt_of_mul_analytic' | ||||
|   {f g : ℂ → ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (h₁g : AnalyticAt ℂ g z₀) | ||||
|   (h₂g : g z₀ ≠ 0) : | ||||
|   StronglyMeromorphicAt f z₀ → StronglyMeromorphicAt (f * g) z₀ := by | ||||
|  | ||||
|   intro hf | ||||
|   --unfold StronglyMeromorphicAt at hf | ||||
|   rcases hf with h₁f|h₁f | ||||
|   · left | ||||
|     rw [eventually_nhds_iff] at h₁f | ||||
|     obtain ⟨t, ht⟩ := h₁f | ||||
|     rw [eventually_nhds_iff] | ||||
|     use t | ||||
|     constructor | ||||
|     · intro y hy | ||||
|       simp | ||||
|       left | ||||
|       exact ht.1 y hy | ||||
|     · exact ht.2 | ||||
|   · right | ||||
|     obtain ⟨n, g_f, h₁g_f, h₂g_f, h₃g_f⟩ := h₁f | ||||
|     use n | ||||
|     use g * g_f | ||||
|     constructor | ||||
|     · apply AnalyticAt.mul | ||||
|       exact h₁g | ||||
|       exact h₁g_f | ||||
|     · constructor | ||||
|       · simp | ||||
|         exact ⟨h₂g, h₂g_f⟩ | ||||
|       · rw [eventually_nhds_iff] at h₃g_f | ||||
|         obtain ⟨t, ht⟩ := h₃g_f | ||||
|         rw [eventually_nhds_iff] | ||||
|         use t | ||||
|         constructor | ||||
|         · intro y hy | ||||
|           simp | ||||
|           rw [ht.1] | ||||
|           simp | ||||
|           ring | ||||
|           exact hy | ||||
|         · exact ht.2 | ||||
|  | ||||
|  | ||||
| /- Strongly MeromorphicAt is Meromorphic -/ | ||||
| theorem StronglyMeromorphicAt.meromorphicAt | ||||
| @@ -125,6 +170,35 @@ theorem stronglyMeromorphicAt_congr | ||||
|           assumption | ||||
|  | ||||
|  | ||||
| theorem stronglyMeromorphicAt_of_mul_analytic | ||||
|   {f g : ℂ → ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (h₁g : AnalyticAt ℂ g z₀) | ||||
|   (h₂g : g z₀ ≠ 0) : | ||||
|   StronglyMeromorphicAt f z₀ ↔ StronglyMeromorphicAt (f * g) z₀ := by | ||||
|   constructor | ||||
|   · apply stronglyMeromorphicAt_of_mul_analytic' h₁g h₂g | ||||
|   · intro hprod | ||||
|     let g' := fun z ↦ (g z)⁻¹ | ||||
|     have h₁g' := h₁g.inv h₂g | ||||
|     have h₂g' : g' z₀ ≠ 0 := by | ||||
|       exact inv_ne_zero h₂g | ||||
|  | ||||
|     let B := stronglyMeromorphicAt_of_mul_analytic' h₁g' h₂g' (f := f * g) hprod | ||||
|     have : f =ᶠ[𝓝 z₀] f * g * fun x => (g x)⁻¹ := by | ||||
|       unfold Filter.EventuallyEq | ||||
|       apply Filter.eventually_iff_exists_mem.mpr | ||||
|       use g⁻¹' {0}ᶜ | ||||
|       constructor | ||||
|       · apply ContinuousAt.preimage_mem_nhds | ||||
|         exact AnalyticAt.continuousAt h₁g | ||||
|         exact compl_singleton_mem_nhds_iff.mpr h₂g | ||||
|       · intro y hy | ||||
|         simp at hy | ||||
|         simp [hy] | ||||
|     rwa [stronglyMeromorphicAt_congr this] | ||||
|  | ||||
|  | ||||
| theorem StronglyMeromorphicAt.order_eq_zero_iff | ||||
|   {f : ℂ → ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   | ||||
| @@ -14,10 +14,10 @@ theorem MeromorphicOn.decompose₁ | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   {z₀ : ℂ} | ||||
|   (hz₀ : z₀ ∈ U) | ||||
|   (h₁f : MeromorphicOn f U) | ||||
|   (h₂f : StronglyMeromorphicAt f z₀) | ||||
|   (h₃f : h₂f.meromorphicAt.order ≠ ⊤) : | ||||
|   (h₃f : h₂f.meromorphicAt.order ≠ ⊤) | ||||
|   (hz₀ : z₀ ∈ U) : | ||||
|   ∃ g : ℂ → ℂ, (MeromorphicOn g U) | ||||
|     ∧ (AnalyticAt ℂ g z₀) | ||||
|     ∧ (g z₀ ≠ 0) | ||||
| @@ -146,14 +146,42 @@ theorem MeromorphicOn.decompose₁ | ||||
| theorem MeromorphicOn.decompose₂ | ||||
|   {f : ℂ → ℂ} | ||||
|   {U : Set ℂ} | ||||
|   {P : Finset ℂ} | ||||
|   (hP : P.toSet ⊆ U) | ||||
|   (h₁f : MeromorphicOn f U) | ||||
|   (h₂f : ∀ hp : p ∈ P, StronglyMeromorphicAt f p) | ||||
|   (h₃f : ∀ hp : p ∈ P, (h₂f hp).meromorphicAt.order ≠ ⊤) : | ||||
|   ∃ g : ℂ → ℂ, (MeromorphicOn g U) | ||||
|     ∧ (∀ p ∈ P, AnalyticAt ℂ g p) | ||||
|     ∧ (∀ p ∈ P, g p ≠ 0) | ||||
|     ∧ (f = g * ∏ p ∈ P, fun z ↦ (z - p) ^ (h₁f.divisor p)) := by | ||||
|   {P : Finset U} | ||||
|   (hf : StronglyMeromorphicOn f U) : | ||||
|   (∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) → | ||||
|     ∃ g : ℂ → ℂ, (MeromorphicOn g U) | ||||
|     ∧ (∀ p : P, AnalyticAt ℂ g p) | ||||
|     ∧ (∀ p : P, g p ≠ 0) | ||||
|     ∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1)) := by | ||||
|  | ||||
|   sorry | ||||
|   apply Finset.induction (p := fun (P : Finset U) ↦ | ||||
|     (∀ p ∈ P, (hf p p.2).meromorphicAt.order ≠ ⊤) → | ||||
|     ∃ g : ℂ → ℂ, (MeromorphicOn g U) | ||||
|     ∧ (∀ p : P, AnalyticAt ℂ g p) | ||||
|     ∧ (∀ p : P, g p ≠ 0) | ||||
|     ∧ (f = g * ∏ p : P, fun z ↦ (z - p.1.1) ^ (hf.meromorphicOn.divisor p.1.1))) | ||||
|  | ||||
|   -- case empty | ||||
|   simp | ||||
|   exact hf.meromorphicOn | ||||
|  | ||||
|   -- case insert | ||||
|   intro u P hu iHyp | ||||
|   intro hOrder | ||||
|   obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀, h₄g₀⟩ := iHyp (fun p hp ↦ hOrder p (Finset.mem_insert_of_mem hp)) | ||||
|  | ||||
|   have h₅g₀ : StronglyMeromorphicAt g₀ u := by | ||||
|  | ||||
|     sorry | ||||
|   have h₆g₀ : (h₁g₀ u u.2).order ≠ ⊤ := by | ||||
|     sorry | ||||
|  | ||||
|   obtain ⟨g, h₁g, h₂g, h₃g, h₄g⟩ := h₁g₀.decompose₁ h₅g₀ h₆g₀ u.2 | ||||
|   use g | ||||
|   · constructor | ||||
|     · exact h₁g | ||||
|     · constructor | ||||
|       · sorry | ||||
|       · constructor | ||||
|         · sorry | ||||
|         · sorry | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus