Working…
This commit is contained in:
parent
5f3f7173f5
commit
4c4ed3d2b8
@ -45,24 +45,36 @@ theorem Nevanlinna_counting₁₁
|
|||||||
(hf : MeromorphicOn f ⊤) :
|
(hf : MeromorphicOn f ⊤) :
|
||||||
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
(hf.add (MeromorphicOn.const a)).N_infty = hf.N_infty := by
|
||||||
|
|
||||||
have {z : ℂ} : 0 < (hf z trivial).order → (hf z trivial).order = ((hf.add (MeromorphicOn.const a)) z trivial).order:= by
|
|
||||||
intro h
|
|
||||||
|
|
||||||
let A := (MeromorphicAt.const a)
|
|
||||||
rw [←MeromorphicAt.order_add_of_ne_orders (hf z trivial)]
|
|
||||||
simp
|
|
||||||
sorry
|
|
||||||
|
|
||||||
funext r
|
funext r
|
||||||
unfold MeromorphicOn.N_infty
|
unfold MeromorphicOn.N_infty
|
||||||
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
let A := (hf.restrict |r|).divisor.finiteSupport (isCompact_closedBall 0 |r|)
|
||||||
repeat
|
repeat
|
||||||
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
rw [finsum_eq_sum_of_support_subset (s := A.toFinset)]
|
||||||
apply Finset.sum_congr rfl
|
apply Finset.sum_congr rfl
|
||||||
intro x hx
|
intro x hx; simp at hx
|
||||||
congr 2
|
congr 2
|
||||||
|
|
||||||
simp at hx
|
by_cases h : 0 ≤ (hf.restrict |r|).divisor x
|
||||||
|
· simp [h]
|
||||||
|
let A := (hf.restrict |r|).divisor_add_const₁ a h
|
||||||
|
exact A
|
||||||
|
|
||||||
|
· simp at h
|
||||||
|
have h' : 0 ≤ -((hf.restrict |r|).divisor x) := by
|
||||||
|
apply Int.le_neg_of_le_neg
|
||||||
|
simp
|
||||||
|
exact Int.le_of_lt h
|
||||||
|
simp [h']
|
||||||
|
clear h'
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
simp [h]
|
||||||
|
|
||||||
|
linarith
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
@ -11,7 +11,7 @@ theorem meromorphicAt_congr
|
|||||||
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
|
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
|
||||||
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
|
||||||
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
|
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
|
||||||
(h : f =ᶠ[nhdsWithin x {x}ᶜ] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
|
(h : f =ᶠ[𝓝[≠] x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
|
||||||
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
|
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
|
||||||
|
|
||||||
|
|
||||||
@ -455,4 +455,38 @@ theorem MeromorphicAt.order_add_of_ne_orders
|
|||||||
rw [this, h₃g]
|
rw [this, h₃g]
|
||||||
simp
|
simp
|
||||||
|
|
||||||
|
-- Might want to think about adding an analytic function instead of a constant
|
||||||
|
theorem MeromorphicAt.order_add_const
|
||||||
|
--have {z : ℂ} : 0 < (hf z trivial).order → (hf z trivial).order = ((hf.add (MeromorphicOn.const a)) z trivial).order:= by
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{z a : ℂ}
|
||||||
|
(hf : MeromorphicAt f z) :
|
||||||
|
hf.order < 0 → hf.order = (hf.add (MeromorphicAt.const a z)).order := by
|
||||||
|
intro h
|
||||||
|
|
||||||
|
by_cases ha: a = 0
|
||||||
|
· -- might want theorem MeromorphicAt.order_const
|
||||||
|
have : (MeromorphicAt.const a z).order = ⊤ := by
|
||||||
|
rw [MeromorphicAt.order_eq_top_iff]
|
||||||
|
rw [ha]
|
||||||
|
simp
|
||||||
|
rw [←hf.order_add_of_ne_orders (MeromorphicAt.const a z)]
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
exact LT.lt.ne_top h
|
||||||
|
· have : (MeromorphicAt.const a z).order = (0 : ℤ) := by
|
||||||
|
rw [MeromorphicAt.order_eq_int_iff]
|
||||||
|
use fun _ ↦ a
|
||||||
|
constructor
|
||||||
|
· exact analyticAt_const
|
||||||
|
· simpa
|
||||||
|
rw [←hf.order_add_of_ne_orders (MeromorphicAt.const a z)]
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
exact le_of_lt h
|
||||||
|
rw [this]
|
||||||
|
exact ne_of_lt h
|
||||||
|
|
||||||
|
|
||||||
-- might want theorem MeromorphicAt.order_zpow
|
-- might want theorem MeromorphicAt.order_zpow
|
||||||
|
@ -169,6 +169,61 @@ theorem MeromorphicOn.divisor_inv
|
|||||||
simp [hz]
|
simp [hz]
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.divisor_add_const₁
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{z : ℂ}
|
||||||
|
(hf : MeromorphicOn f U)
|
||||||
|
(a : ℂ) :
|
||||||
|
0 ≤ hf.divisor z → 0 ≤ (hf.add (MeromorphicOn.const a)).divisor z := by
|
||||||
|
intro h
|
||||||
|
|
||||||
|
unfold MeromorphicOn.divisor
|
||||||
|
|
||||||
|
-- Trivial case: z ∉ U
|
||||||
|
by_cases hz : z ∉ U
|
||||||
|
· simp [hz]
|
||||||
|
|
||||||
|
-- Non-trivial case: z ∈ U
|
||||||
|
simp at hz; simp [hz]
|
||||||
|
|
||||||
|
by_cases h₁f : (hf z hz).order = ⊤
|
||||||
|
· have : f + (fun z ↦ a) =ᶠ[𝓝[≠] z] (fun z ↦ a) := by
|
||||||
|
rw [MeromorphicAt.order_eq_top_iff] at h₁f
|
||||||
|
rw [eventually_nhdsWithin_iff] at h₁f
|
||||||
|
rw [eventually_nhds_iff] at h₁f
|
||||||
|
obtain ⟨t, ht⟩ := h₁f
|
||||||
|
rw [eventuallyEq_nhdsWithin_iff]
|
||||||
|
rw [eventually_nhds_iff]
|
||||||
|
use t
|
||||||
|
simp [ht]
|
||||||
|
tauto
|
||||||
|
rw [((hf z hz).add (MeromorphicAt.const a z)).order_congr this]
|
||||||
|
|
||||||
|
by_cases ha: (MeromorphicAt.const a z).order = ⊤
|
||||||
|
· simp [ha]
|
||||||
|
· rw [WithTop.le_untop'_iff]
|
||||||
|
apply AnalyticAt.meromorphicAt_order_nonneg
|
||||||
|
exact analyticAt_const
|
||||||
|
tauto
|
||||||
|
|
||||||
|
· rw [WithTop.le_untop'_iff]
|
||||||
|
let A := (hf z hz).order_add (MeromorphicAt.const a z)
|
||||||
|
have : 0 ≤ min (hf z hz).order (MeromorphicAt.const a z).order := by
|
||||||
|
apply le_min
|
||||||
|
--
|
||||||
|
unfold MeromorphicOn.divisor at h
|
||||||
|
simp [hz] at h
|
||||||
|
let V := untop'_of_ne_top (d := 0) h₁f
|
||||||
|
rw [← V]
|
||||||
|
simp [h]
|
||||||
|
--
|
||||||
|
apply AnalyticAt.meromorphicAt_order_nonneg
|
||||||
|
exact analyticAt_const
|
||||||
|
exact le_trans this A
|
||||||
|
tauto
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
|
Loading…
Reference in New Issue
Block a user