Update complexHarmonic.lean
This commit is contained in:
parent
e7b23a6b2c
commit
4acac60a4f
|
@ -112,3 +112,52 @@ theorem im_of_holomorphic_is_harmonic {f : ℂ → ℂ} (h : Differentiable ℂ
|
||||||
rw [(holomorphic_is_harmonic h).right z]
|
rw [(holomorphic_is_harmonic h).right z]
|
||||||
simp
|
simp
|
||||||
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
exact ContDiff.restrict_scalars ℝ (Differentiable.contDiff h)
|
||||||
|
|
||||||
|
|
||||||
|
theorem logabs_of_holomorphic_is_harmonic
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
(h₁ : Differentiable ℂ f)
|
||||||
|
(h₂ : ∀ z, f z ≠ 0) :
|
||||||
|
Harmonic (fun z ↦ Real.log ‖f z‖) := by
|
||||||
|
|
||||||
|
-- f is real C²
|
||||||
|
have f_is_real_C2 : ContDiff ℝ 2 f :=
|
||||||
|
ContDiff.restrict_scalars ℝ (Differentiable.contDiff h₁)
|
||||||
|
|
||||||
|
-- The norm square is real C²
|
||||||
|
have normSq_is_real_C2 : ContDiff ℝ 2 Complex.normSq := by
|
||||||
|
unfold Complex.normSq
|
||||||
|
simp
|
||||||
|
apply ContDiff.add
|
||||||
|
apply ContDiff.mul
|
||||||
|
sorry
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· -- logabs f is real C²
|
||||||
|
|
||||||
|
have : (fun z ↦ Real.log ‖f z‖) = (Real.log ∘ Complex.normSq ∘ f) / 2 := by
|
||||||
|
funext z
|
||||||
|
simp
|
||||||
|
unfold Complex.abs
|
||||||
|
simp
|
||||||
|
rw [Real.log_sqrt]
|
||||||
|
exact Complex.normSq_nonneg (f z)
|
||||||
|
rw [this]
|
||||||
|
have : Real.log ∘ ⇑Complex.normSq ∘ f / 2 = (fun z ↦ (1 / 2) • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
||||||
|
sorry
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
apply contDiff_iff_contDiffAt.2
|
||||||
|
intro z
|
||||||
|
|
||||||
|
apply ContDiffAt.const_smul
|
||||||
|
apply ContDiffAt.comp
|
||||||
|
apply Real.contDiffAt_log.2
|
||||||
|
simp
|
||||||
|
exact h₂ z
|
||||||
|
apply ContDiffAt.comp
|
||||||
|
exact ContDiff.contDiffAt normSq_is_real_C2
|
||||||
|
exact ContDiff.contDiffAt f_is_real_C2
|
||||||
|
|
||||||
|
· -- Laplace vanishes
|
||||||
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue