Update complexHarmonic.lean

This commit is contained in:
Stefan Kebekus 2024-05-14 09:47:46 +02:00
parent e7b23a6b2c
commit 4acac60a4f
1 changed files with 49 additions and 0 deletions

View File

@ -112,3 +112,52 @@ theorem im_of_holomorphic_is_harmonic {f : } (h : Differentiable
rw [(holomorphic_is_harmonic h).right z] rw [(holomorphic_is_harmonic h).right z]
simp simp
exact ContDiff.restrict_scalars (Differentiable.contDiff h) exact ContDiff.restrict_scalars (Differentiable.contDiff h)
theorem logabs_of_holomorphic_is_harmonic
{f : }
(h₁ : Differentiable f)
(h₂ : ∀ z, f z ≠ 0) :
Harmonic (fun z ↦ Real.log ‖f z‖) := by
-- f is real C²
have f_is_real_C2 : ContDiff 2 f :=
ContDiff.restrict_scalars (Differentiable.contDiff h₁)
-- The norm square is real C²
have normSq_is_real_C2 : ContDiff 2 Complex.normSq := by
unfold Complex.normSq
simp
apply ContDiff.add
apply ContDiff.mul
sorry
constructor
· -- logabs f is real C²
have : (fun z ↦ Real.log ‖f z‖) = (Real.log ∘ Complex.normSq ∘ f) / 2 := by
funext z
simp
unfold Complex.abs
simp
rw [Real.log_sqrt]
exact Complex.normSq_nonneg (f z)
rw [this]
have : Real.log ∘ ⇑Complex.normSq ∘ f / 2 = (fun z ↦ (1 / 2) • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
sorry
rw [this]
apply contDiff_iff_contDiffAt.2
intro z
apply ContDiffAt.const_smul
apply ContDiffAt.comp
apply Real.contDiffAt_log.2
simp
exact h₂ z
apply ContDiffAt.comp
exact ContDiff.contDiffAt normSq_is_real_C2
exact ContDiff.contDiffAt f_is_real_C2
· -- Laplace vanishes
sorry