Update holomorphic.primitive.lean
This commit is contained in:
parent
8d2339a769
commit
46ededdde7
|
@ -219,52 +219,74 @@ theorem primitive_fderivAtBasepoint
|
|||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||
rw [Filter.eventually_iff_exists_mem]
|
||||
|
||||
let s := f⁻¹' Metric.ball (f 0) c
|
||||
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ))
|
||||
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
||||
have h₂s : 0 ∈ s := by
|
||||
apply Set.mem_preimage.mpr
|
||||
exact Metric.mem_ball_self hc
|
||||
apply Metric.mem_ball_self
|
||||
linarith
|
||||
|
||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
||||
|
||||
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < c := by
|
||||
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||
intro y hy
|
||||
exact mem_ball_iff_norm.mp (h₂ε hy)
|
||||
apply mem_ball_iff_norm.mp (h₂ε hy)
|
||||
|
||||
use Metric.ball 0 ε
|
||||
constructor
|
||||
· exact Metric.ball_mem_nhds 0 h₁ε
|
||||
· intro y hy
|
||||
have h₁y : |y.re| < ε := by
|
||||
calc |y.re|
|
||||
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
||||
_ < ε := by
|
||||
let A := mem_ball_iff_norm.1 hy
|
||||
simp at A
|
||||
assumption
|
||||
|
||||
sorry
|
||||
|
||||
have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re - 0| := by
|
||||
have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
have h₁x : |x| < ε := by sorry
|
||||
|
||||
have h₁x : |x| < ε := by
|
||||
|
||||
sorry
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := x, im := 0 }
|
||||
rw [mem_ball_iff_norm]
|
||||
simp
|
||||
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
exact h₁x
|
||||
|
||||
sorry
|
||||
/-
|
||||
|
||||
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||
intro x hx
|
||||
have h₁x : |x| < ε := by
|
||||
sorry
|
||||
apply le_of_lt
|
||||
apply h₃ε { re := y.re, im := x }
|
||||
simp
|
||||
have : { re := y.re, im := x } = (x : ℂ) := by
|
||||
rfl
|
||||
rw [this]
|
||||
rw [Complex.abs_ofReal]
|
||||
exact h₁x
|
||||
|
||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
apply norm_add_le
|
||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
simp
|
||||
rw [norm_smul]
|
||||
simp
|
||||
_ ≤ |(∫ (x : ℝ) in (0)..(y.re), ‖f { re := x, im := 0 } - f 0‖)| + |∫ (x : ℝ) in (0)..(y.im), ‖f { re := y.re, im := x } - f 0‖| := by
|
||||
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||
apply add_le_add
|
||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
||||
_ ≤
|
||||
-/
|
||||
exact t₁
|
||||
rfl
|
||||
_ ≤ c * ‖y‖ := by sorry
|
||||
|
||||
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue