Update holomorphic.primitive.lean
This commit is contained in:
		| @@ -219,52 +219,74 @@ theorem primitive_fderivAtBasepoint | ||||
|     rw [← intervalIntegral.integral_sub t₂ t₃] | ||||
|   rw [Filter.eventually_iff_exists_mem] | ||||
|  | ||||
|   let s := f⁻¹' Metric.ball (f 0) c | ||||
|   let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ)) | ||||
|   have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball | ||||
|   have h₂s : 0 ∈ s := by | ||||
|     apply Set.mem_preimage.mpr | ||||
|     exact Metric.mem_ball_self hc | ||||
|     apply Metric.mem_ball_self | ||||
|     linarith | ||||
|  | ||||
|   obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s | ||||
|  | ||||
|   have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < c := by | ||||
|   have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by | ||||
|     intro y hy | ||||
|     exact mem_ball_iff_norm.mp (h₂ε hy) | ||||
|     apply mem_ball_iff_norm.mp (h₂ε hy) | ||||
|  | ||||
|   use Metric.ball 0 ε | ||||
|   constructor | ||||
|   · exact Metric.ball_mem_nhds 0 h₁ε | ||||
|   · intro y hy | ||||
|     have h₁y : |y.re| < ε := by | ||||
|       calc |y.re| | ||||
|       _ ≤ Complex.abs y := by apply Complex.abs_re_le_abs | ||||
|       _ < ε := by | ||||
|         let A := mem_ball_iff_norm.1 hy | ||||
|         simp at A | ||||
|         assumption | ||||
|  | ||||
|       sorry | ||||
|  | ||||
|     have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re - 0| := by | ||||
|     have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by | ||||
|       apply intervalIntegral.norm_integral_le_of_norm_le_const | ||||
|       intro x hx | ||||
|       have h₁x : |x| < ε := by sorry | ||||
|  | ||||
|       have h₁x : |x| < ε := by | ||||
|  | ||||
|         sorry | ||||
|       apply le_of_lt | ||||
|       apply h₃ε { re := x, im := 0 } | ||||
|       rw [mem_ball_iff_norm] | ||||
|       simp | ||||
|       have : { re := x, im := 0 } = (x : ℂ) := by rfl | ||||
|       rw [this] | ||||
|       rw [Complex.abs_ofReal] | ||||
|       exact h₁x | ||||
|  | ||||
|     sorry | ||||
|     /- | ||||
|  | ||||
|     have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by | ||||
|       apply intervalIntegral.norm_integral_le_of_norm_le_const | ||||
|       intro x hx | ||||
|       have h₁x : |x| < ε := by | ||||
|         sorry | ||||
|       apply le_of_lt | ||||
|       apply h₃ε { re := y.re, im := x } | ||||
|       simp | ||||
|       have : { re := y.re, im := x } = (x : ℂ) := by | ||||
|         rfl | ||||
|       rw [this] | ||||
|       rw [Complex.abs_ofReal] | ||||
|       exact h₁x | ||||
|  | ||||
|     calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ | ||||
|       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le | ||||
|       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by | ||||
|         apply norm_add_le | ||||
|       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by | ||||
|         simp | ||||
|         rw [norm_smul] | ||||
|         simp | ||||
|       _ ≤ |(∫ (x : ℝ) in (0)..(y.re), ‖f { re := x, im := 0 } - f 0‖)| + |∫ (x : ℝ) in (0)..(y.im), ‖f { re := y.re, im := x } - f 0‖| := by | ||||
|       _ ≤ (c / (4 : ℝ)) * |y.re - 0| + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by | ||||
|         apply add_le_add | ||||
|         apply intervalIntegral.norm_integral_le_abs_integral_norm | ||||
|         apply intervalIntegral.norm_integral_le_abs_integral_norm | ||||
|       _ ≤ | ||||
|     -/ | ||||
|         exact t₁ | ||||
|         rfl | ||||
|       _ ≤ c * ‖y‖ := by sorry | ||||
|  | ||||
|  | ||||
|   sorry | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus