Update holomorphic.primitive.lean
This commit is contained in:
		| @@ -219,52 +219,74 @@ theorem primitive_fderivAtBasepoint | |||||||
|     rw [← intervalIntegral.integral_sub t₂ t₃] |     rw [← intervalIntegral.integral_sub t₂ t₃] | ||||||
|   rw [Filter.eventually_iff_exists_mem] |   rw [Filter.eventually_iff_exists_mem] | ||||||
|  |  | ||||||
|   let s := f⁻¹' Metric.ball (f 0) c |   let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ)) | ||||||
|   have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball |   have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball | ||||||
|   have h₂s : 0 ∈ s := by |   have h₂s : 0 ∈ s := by | ||||||
|     apply Set.mem_preimage.mpr |     apply Set.mem_preimage.mpr | ||||||
|     exact Metric.mem_ball_self hc |     apply Metric.mem_ball_self | ||||||
|  |     linarith | ||||||
|  |  | ||||||
|   obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s |   obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s | ||||||
|  |  | ||||||
|   have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < c := by |   have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by | ||||||
|     intro y hy |     intro y hy | ||||||
|     exact mem_ball_iff_norm.mp (h₂ε hy) |     apply mem_ball_iff_norm.mp (h₂ε hy) | ||||||
|  |  | ||||||
|   use Metric.ball 0 ε |   use Metric.ball 0 ε | ||||||
|   constructor |   constructor | ||||||
|   · exact Metric.ball_mem_nhds 0 h₁ε |   · exact Metric.ball_mem_nhds 0 h₁ε | ||||||
|   · intro y hy |   · intro y hy | ||||||
|     have h₁y : |y.re| < ε := by |     have h₁y : |y.re| < ε := by | ||||||
|  |       calc |y.re| | ||||||
|  |       _ ≤ Complex.abs y := by apply Complex.abs_re_le_abs | ||||||
|  |       _ < ε := by | ||||||
|  |         let A := mem_ball_iff_norm.1 hy | ||||||
|  |         simp at A | ||||||
|  |         assumption | ||||||
|  |  | ||||||
|       sorry |     have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by | ||||||
|  |  | ||||||
|     have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re - 0| := by |  | ||||||
|       apply intervalIntegral.norm_integral_le_of_norm_le_const |       apply intervalIntegral.norm_integral_le_of_norm_le_const | ||||||
|       intro x hx |       intro x hx | ||||||
|       have h₁x : |x| < ε := by sorry |  | ||||||
|  |       have h₁x : |x| < ε := by | ||||||
|  |  | ||||||
|  |         sorry | ||||||
|       apply le_of_lt |       apply le_of_lt | ||||||
|       apply h₃ε { re := x, im := 0 } |       apply h₃ε { re := x, im := 0 } | ||||||
|  |       rw [mem_ball_iff_norm] | ||||||
|       simp |       simp | ||||||
|       have : { re := x, im := 0 } = (x : ℂ) := by rfl |       have : { re := x, im := 0 } = (x : ℂ) := by rfl | ||||||
|       rw [this] |       rw [this] | ||||||
|       rw [Complex.abs_ofReal] |       rw [Complex.abs_ofReal] | ||||||
|       exact h₁x |       exact h₁x | ||||||
|  |  | ||||||
|     sorry |  | ||||||
|     /- |     have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by | ||||||
|  |       apply intervalIntegral.norm_integral_le_of_norm_le_const | ||||||
|  |       intro x hx | ||||||
|  |       have h₁x : |x| < ε := by | ||||||
|  |         sorry | ||||||
|  |       apply le_of_lt | ||||||
|  |       apply h₃ε { re := y.re, im := x } | ||||||
|  |       simp | ||||||
|  |       have : { re := y.re, im := x } = (x : ℂ) := by | ||||||
|  |         rfl | ||||||
|  |       rw [this] | ||||||
|  |       rw [Complex.abs_ofReal] | ||||||
|  |       exact h₁x | ||||||
|  |  | ||||||
|     calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ |     calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ | ||||||
|       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le |       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by | ||||||
|  |         apply norm_add_le | ||||||
|       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by |       _ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by | ||||||
|         simp |         simp | ||||||
|         rw [norm_smul] |         rw [norm_smul] | ||||||
|         simp |         simp | ||||||
|       _ ≤ |(∫ (x : ℝ) in (0)..(y.re), ‖f { re := x, im := 0 } - f 0‖)| + |∫ (x : ℝ) in (0)..(y.im), ‖f { re := y.re, im := x } - f 0‖| := by |       _ ≤ (c / (4 : ℝ)) * |y.re - 0| + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by | ||||||
|         apply add_le_add |         apply add_le_add | ||||||
|         apply intervalIntegral.norm_integral_le_abs_integral_norm |         exact t₁ | ||||||
|         apply intervalIntegral.norm_integral_le_abs_integral_norm |         rfl | ||||||
|       _ ≤ |       _ ≤ c * ‖y‖ := by sorry | ||||||
|     -/ |  | ||||||
|  |  | ||||||
|  |  | ||||||
|   sorry |   sorry | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus