Update holomorphic.primitive.lean
This commit is contained in:
parent
8d2339a769
commit
46ededdde7
|
@ -219,52 +219,74 @@ theorem primitive_fderivAtBasepoint
|
||||||
rw [← intervalIntegral.integral_sub t₂ t₃]
|
rw [← intervalIntegral.integral_sub t₂ t₃]
|
||||||
rw [Filter.eventually_iff_exists_mem]
|
rw [Filter.eventually_iff_exists_mem]
|
||||||
|
|
||||||
let s := f⁻¹' Metric.ball (f 0) c
|
let s := f⁻¹' Metric.ball (f 0) (c / (4 : ℝ))
|
||||||
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
have h₁s : IsOpen s := IsOpen.preimage hf Metric.isOpen_ball
|
||||||
have h₂s : 0 ∈ s := by
|
have h₂s : 0 ∈ s := by
|
||||||
apply Set.mem_preimage.mpr
|
apply Set.mem_preimage.mpr
|
||||||
exact Metric.mem_ball_self hc
|
apply Metric.mem_ball_self
|
||||||
|
linarith
|
||||||
|
|
||||||
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
obtain ⟨ε, h₁ε, h₂ε⟩ := Metric.isOpen_iff.1 h₁s 0 h₂s
|
||||||
|
|
||||||
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < c := by
|
have h₃ε : ∀ y ∈ Metric.ball 0 ε, ‖(f y) - (f 0)‖ < (c / (4 : ℝ)) := by
|
||||||
intro y hy
|
intro y hy
|
||||||
exact mem_ball_iff_norm.mp (h₂ε hy)
|
apply mem_ball_iff_norm.mp (h₂ε hy)
|
||||||
|
|
||||||
use Metric.ball 0 ε
|
use Metric.ball 0 ε
|
||||||
constructor
|
constructor
|
||||||
· exact Metric.ball_mem_nhds 0 h₁ε
|
· exact Metric.ball_mem_nhds 0 h₁ε
|
||||||
· intro y hy
|
· intro y hy
|
||||||
have h₁y : |y.re| < ε := by
|
have h₁y : |y.re| < ε := by
|
||||||
|
calc |y.re|
|
||||||
|
_ ≤ Complex.abs y := by apply Complex.abs_re_le_abs
|
||||||
|
_ < ε := by
|
||||||
|
let A := mem_ball_iff_norm.1 hy
|
||||||
|
simp at A
|
||||||
|
assumption
|
||||||
|
|
||||||
sorry
|
have t₁ : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ (c / (4 : ℝ)) * |y.re - 0| := by
|
||||||
|
|
||||||
have : ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ ≤ c * |y.re - 0| := by
|
|
||||||
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||||
intro x hx
|
intro x hx
|
||||||
have h₁x : |x| < ε := by sorry
|
|
||||||
|
have h₁x : |x| < ε := by
|
||||||
|
|
||||||
|
sorry
|
||||||
apply le_of_lt
|
apply le_of_lt
|
||||||
apply h₃ε { re := x, im := 0 }
|
apply h₃ε { re := x, im := 0 }
|
||||||
|
rw [mem_ball_iff_norm]
|
||||||
simp
|
simp
|
||||||
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
have : { re := x, im := 0 } = (x : ℂ) := by rfl
|
||||||
rw [this]
|
rw [this]
|
||||||
rw [Complex.abs_ofReal]
|
rw [Complex.abs_ofReal]
|
||||||
exact h₁x
|
exact h₁x
|
||||||
|
|
||||||
|
|
||||||
|
have t₂ : ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ ≤ (c / (4 : ℝ)) * |y.im - 0| := by
|
||||||
|
apply intervalIntegral.norm_integral_le_of_norm_le_const
|
||||||
|
intro x hx
|
||||||
|
have h₁x : |x| < ε := by
|
||||||
sorry
|
sorry
|
||||||
/-
|
apply le_of_lt
|
||||||
|
apply h₃ε { re := y.re, im := x }
|
||||||
|
simp
|
||||||
|
have : { re := y.re, im := x } = (x : ℂ) := by
|
||||||
|
rfl
|
||||||
|
rw [this]
|
||||||
|
rw [Complex.abs_ofReal]
|
||||||
|
exact h₁x
|
||||||
|
|
||||||
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
calc ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0) + Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖
|
||||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by apply norm_add_le
|
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖Complex.I • ∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||||
|
apply norm_add_le
|
||||||
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
_ ≤ ‖(∫ (x : ℝ) in (0)..(y.re), f { re := x, im := 0 } - f 0)‖ + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||||
simp
|
simp
|
||||||
rw [norm_smul]
|
rw [norm_smul]
|
||||||
simp
|
simp
|
||||||
_ ≤ |(∫ (x : ℝ) in (0)..(y.re), ‖f { re := x, im := 0 } - f 0‖)| + |∫ (x : ℝ) in (0)..(y.im), ‖f { re := y.re, im := x } - f 0‖| := by
|
_ ≤ (c / (4 : ℝ)) * |y.re - 0| + ‖∫ (x : ℝ) in (0)..(y.im), f { re := y.re, im := x } - f 0‖ := by
|
||||||
apply add_le_add
|
apply add_le_add
|
||||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
exact t₁
|
||||||
apply intervalIntegral.norm_integral_le_abs_integral_norm
|
rfl
|
||||||
_ ≤
|
_ ≤ c * ‖y‖ := by sorry
|
||||||
-/
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue