working…
This commit is contained in:
parent
75ce3b31ef
commit
4642c017c7
|
@ -3,28 +3,51 @@ import Nevanlinna.holomorphic_examples
|
||||||
|
|
||||||
theorem harmonic_meanValue
|
theorem harmonic_meanValue
|
||||||
{f : ℂ → ℝ}
|
{f : ℂ → ℝ}
|
||||||
(hf : ∀ z, HarmonicAt f z)
|
{z : ℂ}
|
||||||
(R : ℝ)
|
(ρ R : ℝ)
|
||||||
(hR : R > 0) :
|
(hR : R > 0)
|
||||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap 0 R x)) = 2 * Real.pi * f 0
|
(hρ : ρ > R)
|
||||||
|
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
|
||||||
|
:
|
||||||
|
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
||||||
:= by
|
:= by
|
||||||
|
|
||||||
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic hf
|
obtain ⟨F, h₁F, h₂F⟩ := harmonic_is_realOfHolomorphic (gt_trans hρ hR) hf
|
||||||
|
|
||||||
have regF : Differentiable ℂ F := fun z ↦ HolomorphicAt.differentiableAt (h₁F z)
|
have hrρ : Metric.ball z R ⊆ Metric.ball z ρ := by
|
||||||
|
intro x hx
|
||||||
|
exact gt_trans hρ hx
|
||||||
|
|
||||||
have : (∮ (z : ℂ) in C(0, R), z⁻¹ • F z) = (2 * ↑Real.pi * Complex.I) • F 0 := by
|
have reg₀F : DifferentiableOn ℂ F (Metric.ball z ρ) := by
|
||||||
|
intro x hx
|
||||||
|
apply DifferentiableAt.differentiableWithinAt
|
||||||
|
apply HolomorphicAt.differentiableAt (h₁F x _)
|
||||||
|
exact hx
|
||||||
|
|
||||||
|
have reg₁F : DifferentiableOn ℂ F (Metric.ball z R) := by
|
||||||
|
intro x hx
|
||||||
|
apply DifferentiableAt.differentiableWithinAt
|
||||||
|
apply HolomorphicAt.differentiableAt (h₁F x _)
|
||||||
|
exact hrρ hx
|
||||||
|
|
||||||
|
have : (∮ (x : ℂ) in C(z, R), (x - z)⁻¹ • F x) = (2 * ↑Real.pi * Complex.I) • F z := by
|
||||||
let s : Set ℂ := ∅
|
let s : Set ℂ := ∅
|
||||||
let hs : s.Countable := Set.countable_empty
|
let hs : s.Countable := Set.countable_empty
|
||||||
let _ : ℂ := 0
|
let _ : ℂ := 0
|
||||||
let hw : (0 : ℂ) ∈ Metric.ball 0 R := Metric.mem_ball_self hR
|
have hw : (z : ℂ) ∈ Metric.ball z R := Metric.mem_ball_self hR
|
||||||
let hc : ContinuousOn F (Metric.closedBall 0 R) := by
|
have hc : ContinuousOn F (Metric.closedBall z R) := by
|
||||||
apply Continuous.continuousOn
|
apply reg₀F.continuousOn.mono
|
||||||
exact regF.continuous
|
intro x hx
|
||||||
let hd : ∀ x ∈ Metric.ball 0 R \ s, DifferentiableAt ℂ F x := by
|
simp at hx
|
||||||
intro x _
|
simp
|
||||||
exact regF x
|
linarith
|
||||||
|
have hd : ∀ x ∈ Metric.ball z R \ s, DifferentiableAt ℂ F x := by
|
||||||
|
intro x hx
|
||||||
|
let A := reg₁F x hx.1
|
||||||
|
apply A.differentiableAt
|
||||||
|
apply (IsOpen.mem_nhds_iff ?hs).mpr
|
||||||
|
exact hx.1
|
||||||
|
exact Metric.isOpen_ball
|
||||||
let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
|
let CIF := Complex.circleIntegral_sub_inv_smul_of_differentiable_on_off_countable hs hw hc hd
|
||||||
simp at CIF
|
simp at CIF
|
||||||
assumption
|
assumption
|
||||||
|
@ -32,7 +55,7 @@ theorem harmonic_meanValue
|
||||||
unfold circleIntegral at this
|
unfold circleIntegral at this
|
||||||
simp_rw [deriv_circleMap] at this
|
simp_rw [deriv_circleMap] at this
|
||||||
|
|
||||||
have t₁ {θ : ℝ} : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap 0 R θ) = Complex.I • F (circleMap 0 R θ) := by
|
have t₁ {θ : ℝ} : (circleMap 0 R θ * Complex.I) • (circleMap 0 R θ)⁻¹ • F (circleMap z R θ) = Complex.I • F (circleMap z R θ) := by
|
||||||
rw [← smul_assoc]
|
rw [← smul_assoc]
|
||||||
congr 1
|
congr 1
|
||||||
simp
|
simp
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
import Nevanlinna.complexHarmonic
|
import Nevanlinna.complexHarmonic
|
||||||
import Nevanlinna.holomorphicAt
|
import Nevanlinna.holomorphicAt
|
||||||
import Nevanlinna.holomorphic_primitive2
|
import Nevanlinna.holomorphic_primitive
|
||||||
import Nevanlinna.mathlibAddOn
|
import Nevanlinna.mathlibAddOn
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue