Update meromorphicOn_decompose.lean
This commit is contained in:
parent
de501a7384
commit
4145a9ebc9
|
@ -9,6 +9,20 @@ import Nevanlinna.stronglyMeromorphicOn
|
|||
open scoped Interval Topology
|
||||
open Real Filter MeasureTheory intervalIntegral
|
||||
|
||||
lemma WithTopCoe
|
||||
{n : WithTop ℕ} :
|
||||
WithTop.map (Nat.cast : ℕ → ℤ) n = 0 → n = 0 := by
|
||||
rcases n with h|h
|
||||
· intro h
|
||||
contradiction
|
||||
· intro h₁
|
||||
simp only [WithTop.map, Option.map] at h₁
|
||||
have : (h : ℤ) = 0 := by
|
||||
exact WithTop.coe_eq_zero.mp h₁
|
||||
have : h = 0 := by
|
||||
exact Int.ofNat_eq_zero.mp this
|
||||
rw [this]
|
||||
rfl
|
||||
|
||||
theorem MeromorphicOn.decompose
|
||||
{f : ℂ → ℂ}
|
||||
|
@ -41,13 +55,18 @@ theorem MeromorphicOn.decompose
|
|||
have A := (h₄g z hz).meromorphicAt_order
|
||||
rw [h₂g ⟨z, hz⟩] at A
|
||||
|
||||
have t₀ : (0 : WithTop ℤ) = WithTop.map Nat.cast (0 : WithTop ℕ) := by
|
||||
sorry
|
||||
--rw [← this] at A
|
||||
|
||||
rw [WithTop.map_coe] at A
|
||||
|
||||
sorry
|
||||
have t₀ : (h₄g z hz).order ≠ ⊤ := by
|
||||
by_contra hC
|
||||
rw [hC] at A
|
||||
tauto
|
||||
have t₁ : ∃ n : ℕ, (h₄g z hz).order = n := by
|
||||
exact Option.ne_none_iff_exists'.mp t₀
|
||||
obtain ⟨n, hn⟩ := t₁
|
||||
rw [hn] at A
|
||||
apply WithTopCoe
|
||||
rw [eq_comm]
|
||||
rw [hn]
|
||||
exact A
|
||||
· intro z hz
|
||||
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue