Update complexHarmonic.lean

This commit is contained in:
Stefan Kebekus 2024-05-15 15:03:16 +02:00
parent 058ea29a64
commit 4064f69c03
1 changed files with 35 additions and 1 deletions

View File

@ -1,13 +1,14 @@
import Mathlib.Data.Fin.Tuple.Basic
import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Complex.Basic
import Mathlib.Analysis.Complex.TaylorSeries import Mathlib.Analysis.Complex.TaylorSeries
import Mathlib.Analysis.Calculus.LineDeriv.Basic import Mathlib.Analysis.Calculus.LineDeriv.Basic
import Mathlib.Analysis.Calculus.ContDiff.Defs import Mathlib.Analysis.Calculus.ContDiff.Defs
import Mathlib.Analysis.Calculus.FDeriv.Basic import Mathlib.Analysis.Calculus.FDeriv.Basic
import Mathlib.Analysis.Calculus.FDeriv.Symmetric import Mathlib.Analysis.Calculus.FDeriv.Symmetric
import Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv
import Mathlib.Data.Complex.Module import Mathlib.Data.Complex.Module
import Mathlib.Data.Complex.Order import Mathlib.Data.Complex.Order
import Mathlib.Data.Complex.Exponential import Mathlib.Data.Complex.Exponential
import Mathlib.Data.Fin.Tuple.Basic
import Mathlib.Analysis.RCLike.Basic import Mathlib.Analysis.RCLike.Basic
import Mathlib.Topology.Algebra.InfiniteSum.Module import Mathlib.Topology.Algebra.InfiniteSum.Module
import Mathlib.Topology.Instances.RealVectorSpace import Mathlib.Topology.Instances.RealVectorSpace
@ -227,6 +228,39 @@ theorem logabs_of_holomorphic_is_harmonic
exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z) exact (AddEquivClass.map_ne_zero_iff starRingAut).mpr (h₂ z)
exact h₂ z exact h₂ z
rw [this] rw [this]
rw [laplace_add]
have : Differentiable (Complex.log ∘ f) := by
intro z
apply DifferentiableAt.comp
exact Complex.differentiableAt_log (h₃ z)
exact h₁ z
have : Complex.laplace (Complex.log ∘ f) = 0 := by
let A := holomorphic_is_harmonic this
funext z
exact A.2 z
rw [this]
simp
have : Complex.log ∘ ⇑(starRingEnd ) ∘ f = ⇑(starRingEnd ) ∘ Complex.log ∘ f := by
funext z
unfold Function.comp
rw [Complex.log_conj]
exact Complex.slitPlane_arg_ne_pi (h₃ z)
rw [this]
have : ⇑(starRingEnd ) ∘ Complex.log ∘ f = Complex.conjCLE ∘ Complex.log ∘ f := by
rfl
rw [this]
have : ContDiff 2 (Complex.log ∘ f) := by sorry
have : Complex.laplace (⇑Complex.conjCLE ∘ f) = ⇑Complex.conjCLE ∘ Complex.laplace (f) := by
apply laplace_compContLin
sorry
rw [laplace_compContLin this]
sorry
sorry sorry
sorry sorry