Update holomorphic_JensenFormula2.lean
This commit is contained in:
parent
e901f241cc
commit
3bead7a9bf
|
@ -7,7 +7,7 @@ import Nevanlinna.specialFunctions_CircleIntegral_affine
|
|||
|
||||
open Real
|
||||
|
||||
|
||||
/-
|
||||
noncomputable def Zeroset
|
||||
{f : ℂ → ℂ}
|
||||
{s : Set ℂ}
|
||||
|
@ -72,7 +72,7 @@ noncomputable def order
|
|||
let A := ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
||||
let B := (h₁f i.1 A).analyticAt
|
||||
exact B.order.toNat
|
||||
|
||||
-/
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
|
@ -180,29 +180,28 @@ theorem jensen_case_R_eq_one
|
|||
exact Ne.symm (zero_ne_one' ℝ)
|
||||
|
||||
|
||||
have h₁Gi : ∀ i ∈ (ZeroFinset h₁f h₂f).attach, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
||||
have h₁Gi : ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, IntervalIntegrable (fun x => log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π) := by
|
||||
-- This is hard. Need to invoke specialFunctions_CircleIntegral_affine.
|
||||
sorry
|
||||
|
||||
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x) = (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x)))) + ∑ x ∈ (ZeroFinset h₁f h₂f).attach, ↑(order x) * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||
have : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 1 x)
|
||||
= (∫ (x : ℝ) in (0)..2 * π, log (Complex.abs (F (circleMap 0 1 x))))
|
||||
+ ∑ x ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (h'₁f.order x).toNat * ∫ (x_1 : ℝ) in (0)..2 * π, log (Complex.abs (circleMap 0 1 x_1 - ↑x)) := by
|
||||
dsimp [G]
|
||||
rw [intervalIntegral.integral_add]
|
||||
rw [intervalIntegral.integral_finset_sum]
|
||||
simp_rw [intervalIntegral.integral_const_mul]
|
||||
|
||||
-- ∀ i ∈ (ZeroFinset h₁f).attach, IntervalIntegrable (fun x => ↑(order i) *
|
||||
-- ∀ i ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset,
|
||||
-- IntervalIntegrable (fun x => (h'₁f.order i).toNat *
|
||||
-- log (Complex.abs (circleMap 0 1 x - ↑i))) MeasureTheory.volume 0 (2 * π)
|
||||
intro i hi
|
||||
apply IntervalIntegrable.const_mul
|
||||
have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := by exact ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
||||
simp at this
|
||||
--simp at this
|
||||
by_cases h₂i : ‖i.1‖ = 1
|
||||
-- case pos
|
||||
exact int'₂ h₂i
|
||||
-- case neg
|
||||
have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
|
||||
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
|
@ -234,32 +233,32 @@ theorem jensen_case_R_eq_one
|
|||
apply ContinuousAt.comp
|
||||
apply Real.continuousAt_log
|
||||
simp [h₂F]
|
||||
--
|
||||
-- ContinuousAt (⇑Complex.abs ∘ F ∘ fun x => circleMap 0 1 x) x
|
||||
apply ContinuousAt.comp
|
||||
apply Complex.continuous_abs.continuousAt
|
||||
apply ContinuousAt.comp
|
||||
apply DifferentiableAt.continuousAt (𝕜 := ℂ )
|
||||
apply HolomorphicAt.differentiableAt
|
||||
simp [h₁F]
|
||||
--
|
||||
simp [h'₁F]
|
||||
-- ContinuousAt (fun x => circleMap 0 1 x) x
|
||||
apply Continuous.continuousAt
|
||||
apply continuous_circleMap
|
||||
--
|
||||
have : (fun x => ∑ s ∈ (ZeroFinset h₁f h₂f).attach, ↑(order s) * log (Complex.abs (circleMap 0 1 x - ↑s)))
|
||||
= ∑ s ∈ (ZeroFinset h₁f h₂f).attach, (fun x => ↑(order s) * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
|
||||
|
||||
have : (fun x => ∑ s ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (h'₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s)))
|
||||
= ∑ s ∈ (finiteZeros h₁U h₂U h'₁f h'₂f).toFinset, (fun x => (h'₁f.order s).toNat * log (Complex.abs (circleMap 0 1 x - ↑s))) := by
|
||||
funext x
|
||||
simp
|
||||
rw [this]
|
||||
apply IntervalIntegrable.sum
|
||||
intro i h₂i
|
||||
apply IntervalIntegrable.const_mul
|
||||
have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := by exact ((ZeroFinset_mem_iff h₁f i).1 i.2).1
|
||||
simp at this
|
||||
--have : i.1 ∈ Metric.closedBall (0 : ℂ) 1 := i.2
|
||||
--simp at this
|
||||
by_cases h₂i : ‖i.1‖ = 1
|
||||
-- case pos
|
||||
exact int'₂ h₂i
|
||||
-- case neg
|
||||
have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
--have : i.1 ∈ Metric.ball (0 : ℂ) 1 := by sorry
|
||||
apply Continuous.intervalIntegrable
|
||||
apply continuous_iff_continuousAt.2
|
||||
intro x
|
||||
|
@ -287,16 +286,13 @@ theorem jensen_case_R_eq_one
|
|||
have t₀ : ∀ z ∈ Metric.closedBall 0 1, HarmonicAt logAbsF z := by
|
||||
intro z hz
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
apply h₁F z hz
|
||||
apply h'₁F z hz
|
||||
exact h₂F z hz
|
||||
|
||||
apply harmonic_meanValue₁ 1 Real.zero_lt_one t₀
|
||||
simp_rw [← Complex.norm_eq_abs] at this
|
||||
rw [t₁] at this
|
||||
|
||||
--let Z₁ := (ZeroFinset h₁f h₂f) ∩ (Metric.ball 0 1)
|
||||
|
||||
let Z₂ := { x : ZeroFinset h₁f h₂f | ‖x.1‖ = 1 }
|
||||
|
||||
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue