Working…
This commit is contained in:
parent
84abab6b78
commit
39c70be68c
@ -6,6 +6,8 @@ import Nevanlinna.meromorphicOn_divisor
|
|||||||
import Nevanlinna.stronglyMeromorphicOn
|
import Nevanlinna.stronglyMeromorphicOn
|
||||||
import Nevanlinna.mathlibAddOn
|
import Nevanlinna.mathlibAddOn
|
||||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||||
|
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
@ -43,27 +45,85 @@ lemma c
|
|||||||
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
|
exact TopologicalSpace.SecondCountableTopology.to_separableSpace
|
||||||
|
|
||||||
|
|
||||||
theorem integrability_congr_changeDiscrete
|
theorem d
|
||||||
|
{U S : Set ℂ}
|
||||||
|
{r : ℝ}
|
||||||
|
(hU : Metric.sphere 0 |r| ⊆ U)
|
||||||
|
(hS : S ∈ Filter.codiscreteWithin U) :
|
||||||
|
Countable ((circleMap 0 r)⁻¹' (S ∪ Uᶜ)ᶜ) := by
|
||||||
|
|
||||||
|
have : (circleMap 0 r)⁻¹' U = ⊤ := by
|
||||||
|
simpa
|
||||||
|
simp [this]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
theorem integrability_congr_changeDiscrete₀
|
||||||
{f₁ f₂ : ℂ → ℂ}
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
{r : ℝ}
|
{r : ℝ}
|
||||||
|
(hU : Metric.sphere 0 |r| ⊆ U)
|
||||||
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
||||||
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) → IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||||||
intro hf₁
|
intro hf₁
|
||||||
|
|
||||||
apply IntervalIntegrable.congr hf₁
|
by_cases hr : r = 0
|
||||||
|
· unfold circleMap
|
||||||
|
rw [hr]
|
||||||
|
simp
|
||||||
|
have : f₂ ∘ (fun (θ : ℝ) ↦ 0) = (fun r ↦ f₂ 0) := by
|
||||||
|
exact rfl
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
|
||||||
|
· apply IntervalIntegrable.congr hf₁
|
||||||
rw [Filter.eventuallyEq_iff_exists_mem]
|
rw [Filter.eventuallyEq_iff_exists_mem]
|
||||||
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∩ U)
|
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ)
|
||||||
constructor
|
constructor
|
||||||
· apply Set.Countable.measure_zero
|
· apply Set.Countable.measure_zero
|
||||||
have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∩ U)ᶜ) := by
|
have : (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ))ᶜ = (circleMap 0 r ⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ)ᶜ) := by
|
||||||
exact rfl
|
exact rfl
|
||||||
rw [this]
|
rw [this]
|
||||||
apply Set.Countable.preimage_circleMap
|
apply Set.Countable.preimage_circleMap
|
||||||
apply c
|
let A := c {z | f₁ z = f₂ z} U hf
|
||||||
sorry
|
simp at A
|
||||||
sorry
|
simpa
|
||||||
|
exact hr
|
||||||
· intro x hx
|
· intro x hx
|
||||||
simp at hx
|
simp at hx
|
||||||
simp
|
simp
|
||||||
exact hx.1
|
rcases hx with h|h
|
||||||
|
· assumption
|
||||||
|
· let A := hU (circleMap_mem_sphere' 0 r x)
|
||||||
|
tauto
|
||||||
|
|
||||||
|
theorem integrability_congr_changeDiscrete
|
||||||
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{r : ℝ}
|
||||||
|
(hU : Metric.sphere 0 |r| ⊆ U)
|
||||||
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
||||||
|
IntervalIntegrable (f₁ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) ↔ IntervalIntegrable (f₂ ∘ (circleMap 0 r)) MeasureTheory.volume 0 (2 * π) := by
|
||||||
|
|
||||||
|
constructor
|
||||||
|
· exact integrability_congr_changeDiscrete₀ hU hf
|
||||||
|
· exact integrability_congr_changeDiscrete₀ hU (EventuallyEq.symm hf)
|
||||||
|
|
||||||
|
|
||||||
|
theorem integral_congr_changeDiscrete
|
||||||
|
{f₁ f₂ : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{r : ℝ}
|
||||||
|
(hU : Metric.sphere 0 |r| ⊆ U)
|
||||||
|
(hf : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) :
|
||||||
|
∫ (x : ℝ) in (0)..(2 * π), f₁ (circleMap 0 r x) = ∫ (x : ℝ) in (0)..(2 * π), f₂ (circleMap 0 r x) := by
|
||||||
|
|
||||||
|
apply intervalIntegral.integral_congr_ae
|
||||||
|
rw [eventually_iff_exists_mem]
|
||||||
|
use (circleMap 0 r)⁻¹' ({z | f₁ z = f₂ z} ∪ Uᶜ)
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
Loading…
Reference in New Issue
Block a user