Working…

This commit is contained in:
Stefan Kebekus 2024-10-31 16:59:22 +01:00
parent 449de2e42a
commit 30ad49b90d
2 changed files with 33 additions and 97 deletions

View File

@ -1,6 +1,3 @@
import Mathlib.Analysis.SpecialFunctions.Integrals
import Mathlib.Analysis.SpecialFunctions.Log.NegMulLog
import Mathlib.Analysis.Convex.SpecificFunctions.Deriv
import Nevanlinna.analyticAt import Nevanlinna.analyticAt
import Nevanlinna.divisor import Nevanlinna.divisor
@ -8,8 +5,6 @@ open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral open Real Filter MeasureTheory intervalIntegral
noncomputable def AnalyticOnNhd.zeroDivisor noncomputable def AnalyticOnNhd.zeroDivisor
{f : } {f : }
{U : Set } {U : Set }
@ -25,99 +20,40 @@ noncomputable def AnalyticOnNhd.zeroDivisor
supportInU := by supportInU := by
intro z hz intro z hz
simp only [Function.mem_support] at hz simp at hz
simp only [Function.mem_support, ne_eq, dite_eq_else, Nat.cast_eq_zero, ENat.toNat_eq_zero, not_forall, not_or] at hz by_contra h₂z
simp [h₂z] at hz
locallyFiniteInU := by
intro z hz
discreteSupport := by apply eventually_nhdsWithin_iff.2
simp_rw [← singletons_open_iff_discrete] rw [eventually_nhds_iff]
simp_rw [Metric.isOpen_singleton_iff]
simp
-- simp only [dite_eq_ite, gt_iff_lt, Subtype.forall, Function.mem_support, ne_eq, ite_eq_else, Classical.not_imp, not_or, Subtype.mk.injEq] rcases AnalyticAt.eventually_eq_zero_or_eventually_ne_zero (hf z hz) with h|h
· rw [eventually_nhds_iff] at h
intro a ha ⟨h₁a, h₂a⟩ obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
obtain ⟨g, h₁g, h₂g, h₃g⟩ := (AnalyticAt.order_neq_top_iff (hf a ha)).1 h₂a use N
rw [Metric.eventually_nhds_iff_ball] at h₃g
have : ∃ ε > 0, ∀ y ∈ Metric.ball (↑a) ε, g y ≠ 0 := by
have h₄g : ContinuousAt g a :=
AnalyticAt.continuousAt h₁g
have : {0}ᶜ ∈ nhds (g a) := by
exact compl_singleton_mem_nhds_iff.mpr h₂g
let F := h₄g.preimage_mem_nhds this
rw [Metric.mem_nhds_iff] at F
obtain ⟨ε, h₁ε, h₂ε⟩ := F
use ε
constructor; exact h₁ε
intro y hy
let G := h₂ε hy
simp at G
exact G
obtain ⟨ε₁, h₁ε₁⟩ := this
obtain ⟨ε₂, h₁ε₂, h₂ε₂⟩ := h₃g
use min ε₁ ε₂
constructor constructor
· have : 0 < min ε₁ ε₂ := by · intro y h₁y _
rw [lt_min_iff] by_cases h₃y : y ∈ U
exact And.imp_right (fun _ => h₁ε₂) h₁ε₁ · simp [h₃y]
exact this right
rw [AnalyticAt.order_eq_top_iff (hf y h₃y)]
rw [eventually_nhds_iff]
use N
· simp [h₃y]
· tauto
intro y hy ⟨h₁y, h₂y⟩ h₃ · rw [eventually_nhdsWithin_iff, eventually_nhds_iff] at h
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h
have h'₂y : ↑y ∈ Metric.ball (↑a) ε₂ := by use N
simp constructor
calc dist y a · intro y h₁y h₂y
_ < min ε₁ ε₂ := by assumption by_cases h₃y : y ∈ U
_ ≤ ε₂ := by exact min_le_right ε₁ ε₂ · simp [h₃y]
left
have h₃y : ↑y ∈ Metric.ball (↑a) ε₁ := by rw [AnalyticAt.order_eq_zero_iff (hf y h₃y)]
simp exact h₁N y h₁y h₂y
calc dist y a · simp [h₃y]
_ < min ε₁ ε₂ := by assumption · tauto
_ ≤ ε₁ := by exact min_le_left ε₁ ε₂
have F := h₂ε₂ y h'₂y
have : f y = 0 := by
rw [AnalyticAt.order_eq_zero_iff (hf y hy)] at h₁y
tauto
rw [this] at F
simp at F
have : g y ≠ 0 := by
exact h₁ε₁.2 y h₃y
simp [this] at F
rw [sub_eq_zero] at F
tauto
theorem AnalyticOnNhd.support_of_zeroDivisor
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Function.support hf.zeroDivisor ⊆ U := by
intro z
contrapose
intro hz
dsimp [AnalyticOnNhd.zeroDivisor]
simp
tauto
theorem AnalyticOnNhd.support_of_zeroDivisor₂
{f : }
{U : Set }
(hf : AnalyticOnNhd f U) :
Function.support hf.zeroDivisor ⊆ f⁻¹' {0} := by
intro z hz
dsimp [AnalyticOnNhd.zeroDivisor] at hz
have t₀ := hf.support_of_zeroDivisor hz
simp [hf.support_of_zeroDivisor hz] at hz
let A := hz.1
let C := (hf z t₀).order_eq_zero_iff
simp
rw [C] at A
tauto

View File

@ -12,7 +12,7 @@ structure Divisor
where where
toFun : toFun :
supportInU : toFun.support ⊆ U supportInU : toFun.support ⊆ U
locallyFiniteInU : ∀ x ∈ U, ∃ N ∈ 𝓝 x, (N ∩ toFun.support).Finite locallyFiniteInU : ∀ x ∈ U, toFun =ᶠ[𝓝[≠] x] 0
instance instance
(U : Set ) : (U : Set ) :