Update Mathlib
This commit is contained in:
parent
42a6c439a9
commit
2ec1335521
|
@ -79,7 +79,7 @@ theorem AnalyticOn.order_eq_nat_iff
|
||||||
exact h₃gloc.self_of_nhds
|
exact h₃gloc.self_of_nhds
|
||||||
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
||||||
simp [h₂z]
|
simp [h₂z]
|
||||||
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
|
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel₀]
|
||||||
simp; norm_num
|
simp; norm_num
|
||||||
rw [sub_eq_zero]
|
rw [sub_eq_zero]
|
||||||
tauto
|
tauto
|
||||||
|
@ -89,7 +89,7 @@ theorem AnalyticOn.order_eq_nat_iff
|
||||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := h
|
||||||
rw [AnalyticAt.order_eq_nat_iff]
|
rw [AnalyticAt.order_eq_nat_iff]
|
||||||
use g
|
use g
|
||||||
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.eventually_of_forall h₃g⟩⟩
|
exact ⟨h₁g z₀ hz₀, ⟨h₂g, Filter.Eventually.of_forall h₃g⟩⟩
|
||||||
|
|
||||||
|
|
||||||
theorem AnalyticAt.order_mul
|
theorem AnalyticAt.order_mul
|
||||||
|
|
|
@ -1,9 +1,9 @@
|
||||||
import Nevanlinna.laplace
|
import Nevanlinna.laplace
|
||||||
|
|
||||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁] [CompleteSpace F₁]
|
variable {F₁ : Type*} [NormedAddCommGroup F₁] [NormedSpace ℂ F₁]
|
||||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℝ G]
|
||||||
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁] [CompleteSpace G₁]
|
variable {G₁ : Type*} [NormedAddCommGroup G₁] [NormedSpace ℂ G₁]
|
||||||
|
|
||||||
|
|
||||||
def Harmonic (f : ℂ → F) : Prop :=
|
def Harmonic (f : ℂ → F) : Prop :=
|
||||||
|
|
|
@ -63,7 +63,7 @@ theorem harmonic_meanValue
|
||||||
nth_rw 1 [mul_comm]
|
nth_rw 1 [mul_comm]
|
||||||
rw [← mul_assoc]
|
rw [← mul_assoc]
|
||||||
simp
|
simp
|
||||||
apply inv_mul_cancel
|
apply inv_mul_cancel₀
|
||||||
apply circleMap_ne_center
|
apply circleMap_ne_center
|
||||||
exact Ne.symm (ne_of_lt hR)
|
exact Ne.symm (ne_of_lt hR)
|
||||||
have t'₁ {θ : ℝ} : circleMap 0 R θ = circleMap z R θ - z := by
|
have t'₁ {θ : ℝ} : circleMap 0 R θ = circleMap z R θ - z := by
|
||||||
|
|
|
@ -2,8 +2,8 @@ import Mathlib.Analysis.Complex.TaylorSeries
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
|
|
||||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||||
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F] [CompleteSpace F]
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace ℂ F]
|
||||||
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G] [CompleteSpace G]
|
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace ℂ G]
|
||||||
|
|
||||||
def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
def HolomorphicAt (f : E → F) (x : E) : Prop :=
|
||||||
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt ℂ f z
|
∃ s ∈ nhds x, ∀ z ∈ s, DifferentiableAt ℂ f z
|
||||||
|
@ -34,6 +34,7 @@ theorem HolomorphicAt_iff
|
||||||
|
|
||||||
|
|
||||||
theorem HolomorphicAt_analyticAt
|
theorem HolomorphicAt_analyticAt
|
||||||
|
[CompleteSpace F]
|
||||||
{f : ℂ → F}
|
{f : ℂ → F}
|
||||||
{x : ℂ} :
|
{x : ℂ} :
|
||||||
HolomorphicAt f x → AnalyticAt ℂ f x := by
|
HolomorphicAt f x → AnalyticAt ℂ f x := by
|
||||||
|
@ -119,6 +120,7 @@ theorem HolomorphicAt_neg
|
||||||
|
|
||||||
|
|
||||||
theorem HolomorphicAt_contDiffAt
|
theorem HolomorphicAt_contDiffAt
|
||||||
|
[CompleteSpace F]
|
||||||
{f : ℂ → F}
|
{f : ℂ → F}
|
||||||
{z : ℂ}
|
{z : ℂ}
|
||||||
(hf : HolomorphicAt f z) :
|
(hf : HolomorphicAt f z) :
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
import Mathlib.Analysis.Complex.CauchyIntegral
|
import Mathlib.Analysis.Complex.CauchyIntegral
|
||||||
--import Mathlib.Analysis.Complex.TaylorSeries
|
|
||||||
import Nevanlinna.cauchyRiemann
|
import Nevanlinna.cauchyRiemann
|
||||||
|
|
||||||
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℂ E]
|
||||||
|
|
|
@ -110,7 +110,7 @@ theorem jensen_case_R_eq_one
|
||||||
simp
|
simp
|
||||||
have {w : ℝ} : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * w) = w := by
|
have {w : ℝ} : Real.pi⁻¹ * 2⁻¹ * (2 * Real.pi * w) = w := by
|
||||||
ring_nf
|
ring_nf
|
||||||
simp [mul_inv_cancel Real.pi_ne_zero]
|
simp [mul_inv_cancel₀ Real.pi_ne_zero]
|
||||||
rw [this]
|
rw [this]
|
||||||
simp
|
simp
|
||||||
rfl
|
rfl
|
||||||
|
|
|
@ -669,7 +669,7 @@ theorem primitive_additivity'
|
||||||
apply (inv_mul_lt_iff zero_lt_two).mpr
|
apply (inv_mul_lt_iff zero_lt_two).mpr
|
||||||
linarith
|
linarith
|
||||||
have h₁ε' : 0 < ε' := by
|
have h₁ε' : 0 < ε' := by
|
||||||
apply Real.mul_pos _ h₁ε
|
apply mul_pos _ h₁ε
|
||||||
apply inv_pos.mpr
|
apply inv_pos.mpr
|
||||||
exact zero_lt_two
|
exact zero_lt_two
|
||||||
|
|
||||||
|
|
|
@ -4,8 +4,8 @@ import Mathlib.Analysis.InnerProductSpace.PiL2
|
||||||
--import Mathlib.Algebra.BigOperators.Basic
|
--import Mathlib.Algebra.BigOperators.Basic
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Bounds
|
import Mathlib.Analysis.Calculus.ContDiff.Bounds
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
import Mathlib.Analysis.Calculus.FDeriv.Symmetric
|
||||||
import Mathlib.LinearAlgebra.Basis
|
--import Mathlib.LinearAlgebra.Basis
|
||||||
import Mathlib.LinearAlgebra.Contraction
|
--import Mathlib.LinearAlgebra.Contraction
|
||||||
|
|
||||||
open BigOperators
|
open BigOperators
|
||||||
open Finset
|
open Finset
|
||||||
|
|
|
@ -78,7 +78,7 @@ theorem partialDeriv_smul₂ {f : E → F} {a : 𝕜} {v : E} : partialDeriv
|
||||||
let ZZ := DifferentiableAt.const_smul contra a⁻¹
|
let ZZ := DifferentiableAt.const_smul contra a⁻¹
|
||||||
have : (fun y => a⁻¹ • a • f y) = f := by
|
have : (fun y => a⁻¹ • a • f y) = f := by
|
||||||
funext i
|
funext i
|
||||||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha]
|
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel₀ ha]
|
||||||
simp
|
simp
|
||||||
rw [this] at ZZ
|
rw [this] at ZZ
|
||||||
exact hf ZZ
|
exact hf ZZ
|
||||||
|
@ -356,11 +356,11 @@ theorem partialDeriv_smul'₂
|
||||||
left_inv := by
|
left_inv := by
|
||||||
intro x
|
intro x
|
||||||
simp
|
simp
|
||||||
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel ha, one_smul]
|
rw [← smul_assoc, smul_eq_mul, mul_comm, mul_inv_cancel₀ ha, one_smul]
|
||||||
right_inv := by
|
right_inv := by
|
||||||
intro x
|
intro x
|
||||||
simp
|
simp
|
||||||
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel ha, one_smul]
|
rw [← smul_assoc, smul_eq_mul, mul_inv_cancel₀ ha, one_smul]
|
||||||
continuous_toFun := continuous_const_smul a
|
continuous_toFun := continuous_const_smul a
|
||||||
continuous_invFun := continuous_const_smul a⁻¹
|
continuous_invFun := continuous_const_smul a⁻¹
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,12 +1,4 @@
|
||||||
import Mathlib.MeasureTheory.Integral.Periodic
|
import Mathlib.MeasureTheory.Integral.Periodic
|
||||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
|
||||||
import Nevanlinna.specialFunctions_Integral_log_sin
|
|
||||||
import Nevanlinna.harmonicAt_examples
|
|
||||||
import Nevanlinna.harmonicAt_meanValue
|
|
||||||
import Mathlib.Algebra.Periodic
|
|
||||||
|
|
||||||
open scoped Interval Topology
|
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
|
||||||
|
|
||||||
|
|
||||||
theorem periodic_integrability₁
|
theorem periodic_integrability₁
|
||||||
|
|
|
@ -107,7 +107,7 @@ lemma int₀
|
||||||
exact norm_pos_iff'.mpr h₁a
|
exact norm_pos_iff'.mpr h₁a
|
||||||
_ = 1 := by
|
_ = 1 := by
|
||||||
dsimp [ρ]
|
dsimp [ρ]
|
||||||
apply inv_mul_cancel
|
apply inv_mul_cancel₀
|
||||||
exact (AbsoluteValue.ne_zero_iff Complex.abs).mpr h₁a
|
exact (AbsoluteValue.ne_zero_iff Complex.abs).mpr h₁a
|
||||||
rw [← h] at this
|
rw [← h] at this
|
||||||
simp at this
|
simp at this
|
||||||
|
|
|
@ -69,7 +69,7 @@ lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((
|
||||||
exact (Set.mem_Icc.1 hx).2
|
exact (Set.mem_Icc.1 hx).2
|
||||||
apply inv_nonneg.mpr (div_nonneg pi_nonneg zero_le_two)
|
apply inv_nonneg.mpr (div_nonneg pi_nonneg zero_le_two)
|
||||||
_ = 1 := by
|
_ = 1 := by
|
||||||
apply inv_mul_cancel
|
apply inv_mul_cancel₀
|
||||||
apply div_ne_zero_iff.mpr
|
apply div_ne_zero_iff.mpr
|
||||||
constructor
|
constructor
|
||||||
· exact pi_ne_zero
|
· exact pi_ne_zero
|
||||||
|
@ -87,7 +87,7 @@ lemma logsinBound : ∀ x ∈ (Set.Icc 0 1), ‖(log ∘ sin) x‖ ≤ ‖log ((
|
||||||
|
|
||||||
let B := strictConcaveOn_sin_Icc.concaveOn.2 i₀ i₁ i₂ i₃ i₄
|
let B := strictConcaveOn_sin_Icc.concaveOn.2 i₀ i₁ i₂ i₃ i₄
|
||||||
simp [Real.sin_pi_div_two] at B
|
simp [Real.sin_pi_div_two] at B
|
||||||
rw [(by ring_nf; rw [mul_inv_cancel pi_ne_zero, one_mul] : 2 / π * x * (π / 2) = x)] at B
|
rw [(by ring_nf; rw [mul_inv_cancel₀ pi_ne_zero, one_mul] : 2 / π * x * (π / 2) = x)] at B
|
||||||
simpa
|
simpa
|
||||||
|
|
||||||
apply log_le_log l₅
|
apply log_le_log l₅
|
||||||
|
|
|
@ -5,7 +5,7 @@
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "leanprover-community",
|
"scope": "leanprover-community",
|
||||||
"rev": "41bc768e2224d6c75128a877f1d6e198859b3178",
|
"rev": "d747f070e42dd21e2649b75090f5b0d45c6ec8e0",
|
||||||
"name": "batteries",
|
"name": "batteries",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": "main",
|
"inputRev": "main",
|
||||||
|
@ -15,7 +15,7 @@
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "leanprover-community",
|
"scope": "leanprover-community",
|
||||||
"rev": "01ad33937acd996ee99eb74eefb39845e4e4b9f5",
|
"rev": "71f54425e6fe0fa75f3aef33a2813a7898392222",
|
||||||
"name": "Qq",
|
"name": "Qq",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": "master",
|
"inputRev": "master",
|
||||||
|
@ -25,7 +25,7 @@
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "leanprover-community",
|
"scope": "leanprover-community",
|
||||||
"rev": "6058ab8d938c5104eace7d0fb5ac17b21cb067b1",
|
"rev": "c792cfd1efe6e01cb176e158ddb195bedfb7ad33",
|
||||||
"name": "aesop",
|
"name": "aesop",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": "master",
|
"inputRev": "master",
|
||||||
|
@ -35,10 +35,10 @@
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "leanprover-community",
|
"scope": "leanprover-community",
|
||||||
"rev": "c87908619cccadda23f71262e6898b9893bffa36",
|
"rev": "a96aee5245720f588876021b6a0aa73efee49c76",
|
||||||
"name": "proofwidgets",
|
"name": "proofwidgets",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": "v0.0.40",
|
"inputRev": "v0.0.41",
|
||||||
"inherited": true,
|
"inherited": true,
|
||||||
"configFile": "lakefile.lean"},
|
"configFile": "lakefile.lean"},
|
||||||
{"url": "https://github.com/leanprover/lean4-cli",
|
{"url": "https://github.com/leanprover/lean4-cli",
|
||||||
|
@ -55,7 +55,7 @@
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "leanprover-community",
|
"scope": "leanprover-community",
|
||||||
"rev": "e7e90d90a62e6d12cbb27cbbfc31c094ee4ecc58",
|
"rev": "57bd2065f1dbea5e9235646fb836c7cea9ab03b6",
|
||||||
"name": "importGraph",
|
"name": "importGraph",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": "main",
|
"inputRev": "main",
|
||||||
|
@ -65,7 +65,7 @@
|
||||||
"type": "git",
|
"type": "git",
|
||||||
"subDir": null,
|
"subDir": null,
|
||||||
"scope": "",
|
"scope": "",
|
||||||
"rev": "d56e389960165aa122e7c97c098d67e4def09470",
|
"rev": "cae1b27ace5330f372b57f1051e228fe9b264d57",
|
||||||
"name": "mathlib",
|
"name": "mathlib",
|
||||||
"manifestFile": "lake-manifest.json",
|
"manifestFile": "lake-manifest.json",
|
||||||
"inputRev": null,
|
"inputRev": null,
|
||||||
|
|
|
@ -1 +1 @@
|
||||||
leanprover/lean4:v4.10.0
|
leanprover/lean4:v4.11.0-rc2
|
||||||
|
|
Loading…
Reference in New Issue