Update holomorphic_zero.lean
This commit is contained in:
parent
f9f177e7b9
commit
2c2370638a
|
@ -122,16 +122,14 @@ example
|
||||||
(h₁f : AnalyticOn ℂ f U)
|
(h₁f : AnalyticOn ℂ f U)
|
||||||
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
(h₂f : ∃ z ∈ U, f z ≠ 0) :
|
||||||
∀ (hz : z ∈ U), (h₁f z hz).order ≠ ⊤ := by
|
∀ (hz : z ∈ U), (h₁f z hz).order ≠ ⊤ := by
|
||||||
|
|
||||||
by_contra H
|
by_contra H
|
||||||
push_neg at H
|
push_neg at H
|
||||||
obtain ⟨z', hz'⟩ := H
|
obtain ⟨z', hz'⟩ := H
|
||||||
|
|
||||||
rw [AnalyticAt.order_eq_top_iff] at hz'
|
rw [AnalyticAt.order_eq_top_iff] at hz'
|
||||||
let A := AnalyticOn.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z'
|
rw [← AnalyticAt.frequently_zero_iff_eventually_zero (h₁f z z')] at hz'
|
||||||
rw [AnalyticAt.frequently_eq_iff_eventually_eq] at A
|
have A := AnalyticOn.eqOn_zero_of_preconnected_of_frequently_eq_zero h₁f hU z' hz'
|
||||||
let B := A hz'
|
tauto
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
theorem discreteZeros
|
theorem discreteZeros
|
||||||
|
|
Loading…
Reference in New Issue