working
This commit is contained in:
parent
971b7cc23c
commit
25d0e2086a
|
@ -93,11 +93,14 @@ theorem MeromorphicOn.open_of_order_neq_top
|
||||||
· exact h₃t'
|
· exact h₃t'
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.order_ne_top
|
|
||||||
|
theorem MeromorphicOn.clopen_of_order_eq_top
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
(h₁U : IsConnected U)
|
|
||||||
(h₁f : MeromorphicOn f U) :
|
(h₁f : MeromorphicOn f U) :
|
||||||
(∃ z₀ : U, (h₁f z₀.1 z₀.2).order = ⊤) ↔ (∀ z : U, (h₁f z.1 z.2).order = ⊤) := by
|
IsClopen { u : U | (h₁f u.1 u.2).order = ⊤ } := by
|
||||||
|
|
||||||
sorry
|
constructor
|
||||||
|
· rw [← isOpen_compl_iff]
|
||||||
|
exact open_of_order_neq_top h₁f
|
||||||
|
· exact open_of_order_eq_top h₁f
|
||||||
|
|
|
@ -2,6 +2,7 @@ import Mathlib.Analysis.Analytic.Meromorphic
|
||||||
import Nevanlinna.analyticAt
|
import Nevanlinna.analyticAt
|
||||||
import Nevanlinna.divisor
|
import Nevanlinna.divisor
|
||||||
import Nevanlinna.meromorphicAt
|
import Nevanlinna.meromorphicAt
|
||||||
|
import Nevanlinna.meromorphicOn
|
||||||
import Nevanlinna.meromorphicOn_divisor
|
import Nevanlinna.meromorphicOn_divisor
|
||||||
import Nevanlinna.stronglyMeromorphicOn
|
import Nevanlinna.stronglyMeromorphicOn
|
||||||
import Nevanlinna.mathlibAddOn
|
import Nevanlinna.mathlibAddOn
|
||||||
|
@ -290,3 +291,50 @@ theorem MeromorphicOn.decompose₂
|
||||||
rw [this]
|
rw [this]
|
||||||
--
|
--
|
||||||
simpa
|
simpa
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.decompose₃
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
(h₁U : IsCompact U)
|
||||||
|
(h₂U : IsConnected U)
|
||||||
|
(h₁f : StronglyMeromorphicOn f U)
|
||||||
|
(h₂f : ∃ u : U, f u ≠ 0) :
|
||||||
|
∃ g : ℂ → ℂ, (MeromorphicOn g U)
|
||||||
|
∧ (AnalyticOn ℂ g U)
|
||||||
|
∧ (∀ u : U, g u ≠ 0)
|
||||||
|
∧ (f = g * ∏ᶠ u : U, fun z ↦ (z - u.1) ^ (h₁f.meromorphicOn.divisor u.1)) := by
|
||||||
|
|
||||||
|
have h₃f : ∀ u : U, (h₁f u u.2).meromorphicAt.order ≠ ⊤ := by
|
||||||
|
let A := h₁f.meromorphicOn.clopen_of_order_eq_top
|
||||||
|
have : PreconnectedSpace U := by
|
||||||
|
apply isPreconnected_iff_preconnectedSpace.mp
|
||||||
|
exact IsConnected.isPreconnected h₂U
|
||||||
|
rw [isClopen_iff] at A
|
||||||
|
rcases A with h|h
|
||||||
|
· intro u
|
||||||
|
have : u ∉ (∅ : Set U) := by exact fun a => a
|
||||||
|
rw [← h] at this
|
||||||
|
simp at this
|
||||||
|
tauto
|
||||||
|
· obtain ⟨u, hu⟩ := h₂f
|
||||||
|
let A := (h₁f u u.2).order_eq_zero_iff.2 hu
|
||||||
|
have : u ∈ (Set.univ : Set U) := by trivial
|
||||||
|
rw [← h] at this
|
||||||
|
simp at this
|
||||||
|
rw [A] at this
|
||||||
|
tauto
|
||||||
|
|
||||||
|
have h₄f : Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||||||
|
exact h₁f.meromorphicOn.divisor.finiteSupport h₁U
|
||||||
|
|
||||||
|
let P' : Set U := Subtype.val ⁻¹' Function.support h₁f.meromorphicOn.divisor
|
||||||
|
have : Finite P' := by
|
||||||
|
unfold P'
|
||||||
|
refine Finite.of_injective ?f ?H
|
||||||
|
simp
|
||||||
|
apply Finite.of_injective
|
||||||
|
sorry
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
|
|
Loading…
Reference in New Issue