diff --git a/Nevanlinna/laplace.lean b/Nevanlinna/laplace.lean index bf6f7ec..4a22111 100644 --- a/Nevanlinna/laplace.lean +++ b/Nevanlinna/laplace.lean @@ -11,6 +11,7 @@ import Mathlib.Data.Complex.Exponential import Mathlib.Analysis.RCLike.Basic import Mathlib.Order.Filter.Basic import Mathlib.Topology.Algebra.InfiniteSum.Module +import Mathlib.Topology.Basic import Mathlib.Topology.Instances.RealVectorSpace import Nevanlinna.cauchyRiemann import Nevanlinna.partialDeriv @@ -79,7 +80,19 @@ theorem laplace_compContLinAt {f : ℂ → F} {l : F →L[ℝ] G} {x : ℂ} (h : Complex.laplace (l ∘ f) x = (l ∘ (Complex.laplace f)) x := by have A₂ : ∃ v ∈ nhds x, (IsOpen v) ∧ (x ∈ v) ∧ (ContDiffOn ℝ 2 f v) := by - sorry + have : ∃ u ∈ nhds x, ContDiffOn ℝ 2 f u := by + apply ContDiffAt.contDiffOn h + rfl + obtain ⟨u, hu₁, hu₂⟩ := this + obtain ⟨v, hv₁, hv₂, hv₃⟩ := mem_nhds_iff.1 hu₁ + use v + constructor + · exact IsOpen.mem_nhds hv₂ hv₃ + · constructor + exact hv₂ + constructor + · exact hv₃ + · exact ContDiffOn.congr_mono hu₂ (fun x => congrFun rfl) hv₁ obtain ⟨v, hv₁, hv₂, hv₃, hv₄⟩ := A₂ have D : ∀ w : ℂ, partialDeriv ℝ w (l ∘ f) =ᶠ[nhds x] l ∘ partialDeriv ℝ w (f) := by