Working…
This commit is contained in:
parent
74ba95926e
commit
24bd4f9ffa
|
@ -266,3 +266,17 @@ theorem AnalyticAt.mul₁
|
|||
AnalyticAt ℂ (f * g) z := by
|
||||
rw [(by rfl : f * g = (fun x ↦ f x * g x))]
|
||||
exact mul hf hg
|
||||
|
||||
|
||||
theorem analyticAt_finprod
|
||||
{α : Type}
|
||||
{f : α → ℂ → ℂ}
|
||||
{z : ℂ}
|
||||
(hf : ∀ a, AnalyticAt ℂ (f a) z) :
|
||||
AnalyticAt ℂ (∏ᶠ a, f a) z := by
|
||||
by_cases h₁f : (Function.mulSupport f).Finite
|
||||
· rw [finprod_eq_prod f h₁f]
|
||||
rw [Finset.prod_fn h₁f.toFinset f]
|
||||
exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a)
|
||||
· rw [finprod_of_infinite_mulSupport h₁f]
|
||||
exact analyticAt_const
|
||||
|
|
|
@ -71,7 +71,9 @@ theorem MeromorphicOn.decompose
|
|||
use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g
|
||||
constructor
|
||||
· apply AnalyticAt.mul₁
|
||||
·
|
||||
· apply analyticAt_finprod
|
||||
intro w
|
||||
|
||||
sorry
|
||||
· apply (h₃g z hz).analytic
|
||||
rw [h₂g ⟨z, hz⟩]
|
||||
|
|
Loading…
Reference in New Issue