Working…
This commit is contained in:
		| @@ -266,3 +266,17 @@ theorem AnalyticAt.mul₁ | ||||
|   AnalyticAt ℂ (f * g) z := by | ||||
|   rw [(by rfl : f * g = (fun x ↦ f x * g x))] | ||||
|   exact mul hf hg | ||||
|  | ||||
|  | ||||
| theorem analyticAt_finprod | ||||
|   {α : Type} | ||||
|   {f : α → ℂ → ℂ} | ||||
|   {z : ℂ} | ||||
|   (hf : ∀ a, AnalyticAt ℂ (f a) z) : | ||||
|   AnalyticAt ℂ (∏ᶠ a, f a) z := by | ||||
|   by_cases h₁f : (Function.mulSupport f).Finite | ||||
|   · rw [finprod_eq_prod f h₁f] | ||||
|     rw [Finset.prod_fn h₁f.toFinset f] | ||||
|     exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a) | ||||
|   · rw [finprod_of_infinite_mulSupport h₁f] | ||||
|     exact analyticAt_const | ||||
|   | ||||
| @@ -71,7 +71,9 @@ theorem MeromorphicOn.decompose | ||||
|         use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g | ||||
|         constructor | ||||
|         · apply AnalyticAt.mul₁ | ||||
|           · | ||||
|           · apply analyticAt_finprod | ||||
|             intro w | ||||
|  | ||||
|             sorry | ||||
|           · apply (h₃g z hz).analytic | ||||
|             rw [h₂g ⟨z, hz⟩] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus