Working…
This commit is contained in:
		| @@ -266,3 +266,17 @@ theorem AnalyticAt.mul₁ | |||||||
|   AnalyticAt ℂ (f * g) z := by |   AnalyticAt ℂ (f * g) z := by | ||||||
|   rw [(by rfl : f * g = (fun x ↦ f x * g x))] |   rw [(by rfl : f * g = (fun x ↦ f x * g x))] | ||||||
|   exact mul hf hg |   exact mul hf hg | ||||||
|  |  | ||||||
|  |  | ||||||
|  | theorem analyticAt_finprod | ||||||
|  |   {α : Type} | ||||||
|  |   {f : α → ℂ → ℂ} | ||||||
|  |   {z : ℂ} | ||||||
|  |   (hf : ∀ a, AnalyticAt ℂ (f a) z) : | ||||||
|  |   AnalyticAt ℂ (∏ᶠ a, f a) z := by | ||||||
|  |   by_cases h₁f : (Function.mulSupport f).Finite | ||||||
|  |   · rw [finprod_eq_prod f h₁f] | ||||||
|  |     rw [Finset.prod_fn h₁f.toFinset f] | ||||||
|  |     exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a) | ||||||
|  |   · rw [finprod_of_infinite_mulSupport h₁f] | ||||||
|  |     exact analyticAt_const | ||||||
|   | |||||||
| @@ -71,7 +71,9 @@ theorem MeromorphicOn.decompose | |||||||
|         use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g |         use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g | ||||||
|         constructor |         constructor | ||||||
|         · apply AnalyticAt.mul₁ |         · apply AnalyticAt.mul₁ | ||||||
|           · |           · apply analyticAt_finprod | ||||||
|  |             intro w | ||||||
|  |  | ||||||
|             sorry |             sorry | ||||||
|           · apply (h₃g z hz).analytic |           · apply (h₃g z hz).analytic | ||||||
|             rw [h₂g ⟨z, hz⟩] |             rw [h₂g ⟨z, hz⟩] | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user
	 Stefan Kebekus
					Stefan Kebekus