Working…

This commit is contained in:
Stefan Kebekus 2024-11-13 16:12:25 +01:00
parent 74ba95926e
commit 24bd4f9ffa
2 changed files with 17 additions and 1 deletions

View File

@ -266,3 +266,17 @@ theorem AnalyticAt.mul₁
AnalyticAt (f * g) z := by AnalyticAt (f * g) z := by
rw [(by rfl : f * g = (fun x ↦ f x * g x))] rw [(by rfl : f * g = (fun x ↦ f x * g x))]
exact mul hf hg exact mul hf hg
theorem analyticAt_finprod
{α : Type}
{f : α}
{z : }
(hf : ∀ a, AnalyticAt (f a) z) :
AnalyticAt (∏ᶠ a, f a) z := by
by_cases h₁f : (Function.mulSupport f).Finite
· rw [finprod_eq_prod f h₁f]
rw [Finset.prod_fn h₁f.toFinset f]
exact Finset.analyticAt_prod h₁f.toFinset (fun a _ ↦ hf a)
· rw [finprod_of_infinite_mulSupport h₁f]
exact analyticAt_const

View File

@ -71,7 +71,9 @@ theorem MeromorphicOn.decompose
use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g use (∏ᶠ p ≠ z, (fun x ↦ (x - p) ^ h₁f.divisor p)) * g
constructor constructor
· apply AnalyticAt.mul₁ · apply AnalyticAt.mul₁
· · apply analyticAt_finprod
intro w
sorry sorry
· apply (h₃g z hz).analytic · apply (h₃g z hz).analytic
rw [h₂g ⟨z, hz⟩] rw [h₂g ⟨z, hz⟩]