working…
This commit is contained in:
parent
271ad821dd
commit
21693bd12d
@ -93,9 +93,7 @@ theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
||||
(h₂f : f z ≠ 0) :
|
||||
HarmonicAt (Real.log ∘ Complex.normSq ∘ f) z := by
|
||||
|
||||
/- First prove the theorem under the additional assumption that
|
||||
|
||||
-/
|
||||
-- First prove the theorem for functions with image in the slitPlane
|
||||
have lem₁ : ∀ g : ℂ → ℂ, (HolomorphicAt g z) → (g z ≠ 0) → (g z ∈ Complex.slitPlane) → HarmonicAt (Real.log ∘ Complex.normSq ∘ g) z := by
|
||||
intro g h₁g h₂g h₃g
|
||||
|
||||
@ -139,6 +137,11 @@ theorem log_normSq_of_holomorphicAt_is_harmonicAt
|
||||
simp
|
||||
apply hx.2
|
||||
|
||||
rw [HarmonicAt_eventuallyEq this]
|
||||
|
||||
|
||||
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
|
@ -64,6 +64,18 @@ theorem HarmonicAt_iff
|
||||
· exact h₂f
|
||||
|
||||
|
||||
theorem HarmonicAt_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : HarmonicAt f₁ x ↔ HarmonicAt f₂ x := by
|
||||
constructor
|
||||
· intro h₁
|
||||
constructor
|
||||
· exact ContDiffAt.congr_of_eventuallyEq h₁.1 (Filter.EventuallyEq.symm h)
|
||||
· exact Filter.EventuallyEq.trans (laplace_eventuallyEq' (Filter.EventuallyEq.symm h)) h₁.2
|
||||
· intro h₁
|
||||
constructor
|
||||
· exact ContDiffAt.congr_of_eventuallyEq h₁.1 h
|
||||
· exact Filter.EventuallyEq.trans (laplace_eventuallyEq' h) h₁.2
|
||||
|
||||
|
||||
theorem HarmonicOn_of_locally_HarmonicOn {f : ℂ → F} {s : Set ℂ} (h : ∀ x ∈ s, ∃ (u : Set ℂ), IsOpen u ∧ x ∈ u ∧ HarmonicOn f (s ∩ u)) :
|
||||
HarmonicOn f s := by
|
||||
constructor
|
||||
@ -142,6 +154,21 @@ theorem harmonicOn_add_harmonicOn_is_harmonicOn {f₁ f₂ : ℂ → F} {s : Set
|
||||
simp
|
||||
|
||||
|
||||
theorem harmonicAt_add_harmonicAt_is_harmonicAt
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{x : ℂ}
|
||||
(h₁ : HarmonicAt f₁ x)
|
||||
(h₂ : HarmonicAt f₂ x) :
|
||||
HarmonicAt (f₁ + f₂) x := by
|
||||
constructor
|
||||
· exact ContDiffAt.add h₁.1 h₂.1
|
||||
· rw [laplace_add_ContDiffAt]
|
||||
intro z hz
|
||||
rw [laplace_add_ContDiffOn hs h₁.1 h₂.1 z hz]
|
||||
rw [h₁.2 z hz, h₂.2 z hz]
|
||||
simp
|
||||
|
||||
|
||||
theorem harmonic_smul_const_is_harmonic {f : ℂ → F} {c : ℝ} (h : Harmonic f) :
|
||||
Harmonic (c • f) := by
|
||||
constructor
|
||||
|
@ -33,6 +33,14 @@ theorem laplace_eventuallyEq {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nh
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I]
|
||||
|
||||
|
||||
|
||||
theorem laplace_eventuallyEq' {f₁ f₂ : ℂ → F} {x : ℂ} (h : f₁ =ᶠ[nhds x] f₂) : Δ f₁ =ᶠ[nhds x] Δ f₂ := by
|
||||
unfold Complex.laplace
|
||||
apply Filter.EventuallyEq.add
|
||||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h 1) 1
|
||||
exact partialDeriv_eventuallyEq' ℝ (partialDeriv_eventuallyEq' ℝ h Complex.I) Complex.I
|
||||
|
||||
|
||||
theorem laplace_add
|
||||
{f₁ f₂ : ℂ → F}
|
||||
(h₁ : ContDiff ℝ 2 f₁)
|
||||
@ -161,6 +169,57 @@ theorem laplace_add_ContDiffAt
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl
|
||||
|
||||
theorem laplace_add_ContDiffAt'
|
||||
{f₁ f₂ : ℂ → F}
|
||||
{x : ℂ}
|
||||
(h₁ : ContDiffAt ℝ 2 f₁ x)
|
||||
(h₂ : ContDiffAt ℝ 2 f₂ x) :
|
||||
Δ (f₁ + f₂) =ᶠ[nhds x] (Δ f₁) + (Δ f₂):= by
|
||||
|
||||
unfold Complex.laplace
|
||||
have : partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) +
|
||||
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂)) =
|
||||
(partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) +
|
||||
(partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) + partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₂))) := by
|
||||
group
|
||||
rw [this]
|
||||
apply Filter.EventuallyEq.add
|
||||
|
||||
suffices hyp : partialDeriv ℝ 1 (partialDeriv ℝ 1 (f₁ + f₂)) =ᶠ[nhds x] partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) + partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂) from by
|
||||
have : (fun x => partialDeriv ℝ 1 (partialDeriv ℝ 1 (f₁ + f₂)) x) = partialDeriv ℝ 1 (partialDeriv ℝ 1 (f₁ + f₂)) := by
|
||||
rfl
|
||||
rw [this]
|
||||
have : (fun x => (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) + partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) x) = (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁)) + (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) := by
|
||||
rfl
|
||||
rwa [this]
|
||||
|
||||
simp
|
||||
|
||||
have h₁₁ : ContDiffAt ℝ 1 f₁ x := h₁.of_le one_le_two
|
||||
have h₂₁ : ContDiffAt ℝ 1 f₂ x := h₂.of_le one_le_two
|
||||
let A : partialDeriv ℝ 1 (f₁ + f₂) =ᶠ[nhds x] (partialDeriv ℝ 1 f₁) + (partialDeriv ℝ 1 f₂) := by
|
||||
exact partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁
|
||||
let B : partialDeriv ℝ 1 (partialDeriv ℝ 1 (f₁ + f₂)) =ᶠ[nhds x] (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁)) + (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₂)) := by
|
||||
sorry
|
||||
|
||||
sorry
|
||||
repeat
|
||||
rw [partialDeriv_eventuallyEq ℝ (partialDeriv_add₂_contDiffAt ℝ h₁₁ h₂₁)]
|
||||
rw [partialDeriv_add₂_differentiableAt]
|
||||
|
||||
-- I am super confused at this point because the tactic 'ring' does not work.
|
||||
-- I do not understand why. So, I need to do things by hand.
|
||||
rw [add_assoc]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ 1 (partialDeriv ℝ 1 f₁) x)]
|
||||
rw [add_comm]
|
||||
rw [add_assoc]
|
||||
rw [add_right_inj (partialDeriv ℝ Complex.I (partialDeriv ℝ Complex.I f₁) x)]
|
||||
rw [add_comm]
|
||||
|
||||
repeat
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₁ v).differentiableAt le_rfl
|
||||
apply fun v ↦ (partialDeriv_contDiffAt ℝ h₂ v).differentiableAt le_rfl
|
||||
|
||||
theorem laplace_smul {f : ℂ → F} : ∀ v : ℝ, Δ (v • f) = v • (Δ f) := by
|
||||
intro v
|
||||
|
Loading…
Reference in New Issue
Block a user