Update stronglyMeromorphic_JensenFormula.lean

This commit is contained in:
Stefan Kebekus 2024-12-05 13:42:47 +01:00
parent 734ea1a8f4
commit 20a0d664b7

View File

@ -1,12 +1,5 @@
import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Analytic.IsolatedZeros
import Nevanlinna.analyticOnNhd_zeroSet
import Nevanlinna.harmonicAt_examples
import Nevanlinna.harmonicAt_meanValue
import Nevanlinna.specialFunctions_CircleIntegral_affine import Nevanlinna.specialFunctions_CircleIntegral_affine
import Nevanlinna.stronglyMeromorphicOn
import Nevanlinna.stronglyMeromorphicOn_eliminate import Nevanlinna.stronglyMeromorphicOn_eliminate
import Nevanlinna.meromorphicOn_divisor
open Real open Real
@ -31,9 +24,30 @@ theorem jensen
have h'₂f : ∃ u : (Metric.closedBall (0 : ) R), f u ≠ 0 := by have h'₂f : ∃ u : (Metric.closedBall (0 : ) R), f u ≠ 0 := by
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩ use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
have h'₁f : StronglyMeromorphicAt f 0 := by
apply h₁f
simp
exact le_of_lt hR
have h''₂f : h'₁f.meromorphicAt.order = 0 := by
rwa [h'₁f.order_eq_zero_iff]
have h'''₂f : h₁f.meromorphicOn.divisor 0 = 0 := by
unfold MeromorphicOn.divisor
simp
tauto
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
have h'₃f : ∀ s ∈ h₃f.toFinset, s ≠ 0 := by
by_contra hCon
push_neg at hCon
obtain ⟨s, h₁s, h₂s⟩ := hCon
rw [h₂s] at h₁s
simp at h₁s
tauto
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by
intro x intro x
contrapose contrapose
@ -147,7 +161,7 @@ theorem jensen
apply Set.Finite.countable apply Set.Finite.countable
exact Finset.finite_toSet h₃f.toFinset exact Finset.finite_toSet h₃f.toFinset
-- --
simp exact Ne.symm (ne_of_lt hR)
have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 R x) have decompose_int_G : ∫ (x : ) in (0)..2 * π, G (circleMap 0 R x)
@ -359,39 +373,31 @@ theorem jensen
rw [mul_add] rw [mul_add]
ring ring
-- --
exact Ne.symm (ne_of_lt hR)
--
intro x hx
simp at hx
rw [zpow_ne_zero_iff]
by_contra hCon
simp at hCon
rw [← (h₁f 0 (by simp)).order_eq_zero_iff] at h₂f
rw [hCon] at hx
unfold MeromorphicOn.divisor at hx
simp at hx
rw [h₂f] at hx
tauto
assumption
-- --
simp simp
by_contra hCon by_contra hCon
nth_rw 1 [h₄F] at h₂f rw [hCon] at hs
simp at h₂f simp at hs
tauto exact hs h'''₂f
--
intro s hs
apply zpow_ne_zero
simp
by_contra hCon
rw [hCon] at hs
simp at hs
exact hs h'''₂f
--
simp only [ne_eq, map_eq_zero]
rw [← ne_eq]
exact h₃F ⟨0, (by simp; exact le_of_lt hR)⟩
-- --
rw [Finset.prod_ne_zero_iff] rw [Finset.prod_ne_zero_iff]
intro x hx intro s hs
simp at hx apply zpow_ne_zero
rw [zpow_ne_zero_iff] simp
by_contra hCon by_contra hCon
simp at hCon rw [hCon] at hs
rw [← (h₁f 0 (by simp)).order_eq_zero_iff] at h₂f simp at hs
rw [hCon] at hx exact hs h'''₂f
unfold MeromorphicOn.divisor at hx
simp at hx
rw [h₂f] at hx
tauto
assumption