Update stronglyMeromorphic_JensenFormula.lean
This commit is contained in:
parent
734ea1a8f4
commit
20a0d664b7
@ -1,12 +1,5 @@
|
|||||||
import Mathlib.Analysis.Complex.CauchyIntegral
|
|
||||||
import Mathlib.Analysis.Analytic.IsolatedZeros
|
|
||||||
import Nevanlinna.analyticOnNhd_zeroSet
|
|
||||||
import Nevanlinna.harmonicAt_examples
|
|
||||||
import Nevanlinna.harmonicAt_meanValue
|
|
||||||
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
import Nevanlinna.specialFunctions_CircleIntegral_affine
|
||||||
import Nevanlinna.stronglyMeromorphicOn
|
|
||||||
import Nevanlinna.stronglyMeromorphicOn_eliminate
|
import Nevanlinna.stronglyMeromorphicOn_eliminate
|
||||||
import Nevanlinna.meromorphicOn_divisor
|
|
||||||
|
|
||||||
open Real
|
open Real
|
||||||
|
|
||||||
@ -31,9 +24,30 @@ theorem jensen
|
|||||||
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by
|
have h'₂f : ∃ u : (Metric.closedBall (0 : ℂ) R), f u ≠ 0 := by
|
||||||
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
|
use ⟨0, Metric.mem_closedBall_self (le_of_lt hR)⟩
|
||||||
|
|
||||||
|
have h'₁f : StronglyMeromorphicAt f 0 := by
|
||||||
|
apply h₁f
|
||||||
|
simp
|
||||||
|
exact le_of_lt hR
|
||||||
|
|
||||||
|
have h''₂f : h'₁f.meromorphicAt.order = 0 := by
|
||||||
|
rwa [h'₁f.order_eq_zero_iff]
|
||||||
|
|
||||||
|
have h'''₂f : h₁f.meromorphicOn.divisor 0 = 0 := by
|
||||||
|
unfold MeromorphicOn.divisor
|
||||||
|
simp
|
||||||
|
tauto
|
||||||
|
|
||||||
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
have h₃f : Set.Finite (Function.support h₁f.meromorphicOn.divisor) := by
|
||||||
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
exact Divisor.finiteSupport h₂U (StronglyMeromorphicOn.meromorphicOn h₁f).divisor
|
||||||
|
|
||||||
|
have h'₃f : ∀ s ∈ h₃f.toFinset, s ≠ 0 := by
|
||||||
|
by_contra hCon
|
||||||
|
push_neg at hCon
|
||||||
|
obtain ⟨s, h₁s, h₂s⟩ := hCon
|
||||||
|
rw [h₂s] at h₁s
|
||||||
|
simp at h₁s
|
||||||
|
tauto
|
||||||
|
|
||||||
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by
|
have h₄f: Function.support (fun s ↦ (h₁f.meromorphicOn.divisor s) * log (R * ‖s‖⁻¹)) ⊆ h₃f.toFinset := by
|
||||||
intro x
|
intro x
|
||||||
contrapose
|
contrapose
|
||||||
@ -147,7 +161,7 @@ theorem jensen
|
|||||||
apply Set.Finite.countable
|
apply Set.Finite.countable
|
||||||
exact Finset.finite_toSet h₃f.toFinset
|
exact Finset.finite_toSet h₃f.toFinset
|
||||||
--
|
--
|
||||||
simp
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
|
||||||
|
|
||||||
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x)
|
have decompose_int_G : ∫ (x : ℝ) in (0)..2 * π, G (circleMap 0 R x)
|
||||||
@ -359,39 +373,31 @@ theorem jensen
|
|||||||
rw [mul_add]
|
rw [mul_add]
|
||||||
ring
|
ring
|
||||||
--
|
--
|
||||||
|
exact Ne.symm (ne_of_lt hR)
|
||||||
|
|
||||||
--
|
|
||||||
intro x hx
|
|
||||||
simp at hx
|
|
||||||
rw [zpow_ne_zero_iff]
|
|
||||||
by_contra hCon
|
|
||||||
simp at hCon
|
|
||||||
rw [← (h₁f 0 (by simp)).order_eq_zero_iff] at h₂f
|
|
||||||
rw [hCon] at hx
|
|
||||||
unfold MeromorphicOn.divisor at hx
|
|
||||||
simp at hx
|
|
||||||
rw [h₂f] at hx
|
|
||||||
tauto
|
|
||||||
assumption
|
|
||||||
--
|
--
|
||||||
simp
|
simp
|
||||||
|
|
||||||
by_contra hCon
|
by_contra hCon
|
||||||
nth_rw 1 [h₄F] at h₂f
|
rw [hCon] at hs
|
||||||
simp at h₂f
|
simp at hs
|
||||||
tauto
|
exact hs h'''₂f
|
||||||
|
--
|
||||||
|
intro s hs
|
||||||
|
apply zpow_ne_zero
|
||||||
|
simp
|
||||||
|
by_contra hCon
|
||||||
|
rw [hCon] at hs
|
||||||
|
simp at hs
|
||||||
|
exact hs h'''₂f
|
||||||
|
--
|
||||||
|
simp only [ne_eq, map_eq_zero]
|
||||||
|
rw [← ne_eq]
|
||||||
|
exact h₃F ⟨0, (by simp; exact le_of_lt hR)⟩
|
||||||
--
|
--
|
||||||
rw [Finset.prod_ne_zero_iff]
|
rw [Finset.prod_ne_zero_iff]
|
||||||
intro x hx
|
intro s hs
|
||||||
simp at hx
|
apply zpow_ne_zero
|
||||||
rw [zpow_ne_zero_iff]
|
simp
|
||||||
by_contra hCon
|
by_contra hCon
|
||||||
simp at hCon
|
rw [hCon] at hs
|
||||||
rw [← (h₁f 0 (by simp)).order_eq_zero_iff] at h₂f
|
simp at hs
|
||||||
rw [hCon] at hx
|
exact hs h'''₂f
|
||||||
unfold MeromorphicOn.divisor at hx
|
|
||||||
simp at hx
|
|
||||||
rw [h₂f] at hx
|
|
||||||
tauto
|
|
||||||
assumption
|
|
||||||
|
Loading…
Reference in New Issue
Block a user