Working…
This commit is contained in:
parent
4cc853a5d9
commit
1e28302c17
@ -88,10 +88,13 @@ theorem Nevanlinna_proximity₀
|
|||||||
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
||||||
--
|
--
|
||||||
apply MeromorphicOn.integrable_logpos_abs_f hr
|
apply MeromorphicOn.integrable_logpos_abs_f hr
|
||||||
|
intro z hx
|
||||||
|
exact h₁f z trivial
|
||||||
|
--
|
||||||
|
apply MeromorphicOn.integrable_logpos_abs_f hr
|
||||||
|
exact MeromorphicOn.inv_iff.mpr fun x a => h₁f x trivial
|
||||||
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
theorem Nevanlinna_proximity
|
theorem Nevanlinna_proximity
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{r : ℝ}
|
{r : ℝ}
|
||||||
@ -105,9 +108,8 @@ theorem Nevanlinna_proximity
|
|||||||
rw [← mul_sub]; congr
|
rw [← mul_sub]; congr
|
||||||
exact loglogpos
|
exact loglogpos
|
||||||
|
|
||||||
|
by_cases h₂r : 0 < r
|
||||||
|
· exact Nevanlinna_proximity₀ h₁f h₂r
|
||||||
have hr : 0 < r := by sorry
|
|
||||||
|
|
||||||
unfold MeromorphicOn.m_infty
|
unfold MeromorphicOn.m_infty
|
||||||
rw [← mul_sub]; congr
|
rw [← mul_sub]; congr
|
||||||
@ -116,8 +118,10 @@ theorem Nevanlinna_proximity
|
|||||||
simp_rw [loglogpos]; congr
|
simp_rw [loglogpos]; congr
|
||||||
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
exact Eq.symm (IsAbsoluteValue.abv_inv Norm.norm (f (circleMap 0 r x)))
|
||||||
--
|
--
|
||||||
apply MeromorphicOn.integrable_logpos_abs_f hr
|
apply MeromorphicOn.integrable_logpos_abs_f
|
||||||
|
|
||||||
|
|
||||||
|
sorry
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
noncomputable def MeromorphicOn.T_infty
|
noncomputable def MeromorphicOn.T_infty
|
||||||
|
@ -1,13 +1,5 @@
|
|||||||
import Mathlib.Analysis.Analytic.Meromorphic
|
|
||||||
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
import Mathlib.MeasureTheory.Integral.CircleIntegral
|
||||||
import Mathlib.MeasureTheory.Integral.IntervalIntegral
|
import Nevanlinna.periodic_integrability
|
||||||
import Nevanlinna.analyticAt
|
|
||||||
import Nevanlinna.divisor
|
|
||||||
import Nevanlinna.meromorphicAt
|
|
||||||
import Nevanlinna.meromorphicOn_divisor
|
|
||||||
import Nevanlinna.stronglyMeromorphicOn
|
|
||||||
import Nevanlinna.stronglyMeromorphicOn_eliminate
|
|
||||||
import Nevanlinna.mathlibAddOn
|
|
||||||
|
|
||||||
open scoped Interval Topology
|
open scoped Interval Topology
|
||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
@ -96,3 +88,61 @@ theorem integral_congr_changeDiscrete
|
|||||||
constructor
|
constructor
|
||||||
· apply Set.Countable.measure_zero (d hr hU hf)
|
· apply Set.Countable.measure_zero (d hr hU hf)
|
||||||
· tauto
|
· tauto
|
||||||
|
|
||||||
|
|
||||||
|
lemma circleMap_neg
|
||||||
|
{r x : ℝ} :
|
||||||
|
circleMap 0 (-r) x = circleMap 0 r (x + π) := by
|
||||||
|
unfold circleMap
|
||||||
|
simp
|
||||||
|
rw [add_mul]
|
||||||
|
rw [Complex.exp_add]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
theorem integrability_congr_negRadius
|
||||||
|
{f : ℂ → ℝ}
|
||||||
|
{r : ℝ} :
|
||||||
|
IntervalIntegrable (fun (θ : ℝ) ↦ f (circleMap 0 r θ)) MeasureTheory.volume 0 (2 * π) →
|
||||||
|
IntervalIntegrable (fun (θ : ℝ) ↦ f (circleMap 0 (-r) θ)) MeasureTheory.volume 0 (2 * π) := by
|
||||||
|
|
||||||
|
intro h
|
||||||
|
simp_rw [circleMap_neg]
|
||||||
|
|
||||||
|
let A := IntervalIntegrable.comp_add_right h π
|
||||||
|
|
||||||
|
have t₀ : Function.Periodic (fun (θ : ℝ) ↦ f (circleMap 0 r θ)) (2 * π) := by
|
||||||
|
intro x
|
||||||
|
simp
|
||||||
|
congr 1
|
||||||
|
exact periodic_circleMap 0 r x
|
||||||
|
rw [← zero_add (2 * π)] at h
|
||||||
|
have B := periodic_integrability4 (a₁ := π) (a₂ := 3 * π) t₀ two_pi_pos h
|
||||||
|
let A := IntervalIntegrable.comp_add_right B π
|
||||||
|
simp at A
|
||||||
|
have : 3 * π - π = 2 * π := by
|
||||||
|
ring
|
||||||
|
rw [this] at A
|
||||||
|
exact A
|
||||||
|
|
||||||
|
|
||||||
|
theorem integrabl_congr_negRadius
|
||||||
|
{f : ℂ → ℝ}
|
||||||
|
{r : ℝ} :
|
||||||
|
∫ (x : ℝ) in (0)..(2 * π), f (circleMap 0 r x) = ∫ (x : ℝ) in (0)..(2 * π), f (circleMap 0 (-r) x) := by
|
||||||
|
|
||||||
|
simp_rw [circleMap_neg]
|
||||||
|
have t₀ : Function.Periodic (fun (θ : ℝ) ↦ f (circleMap 0 r θ)) (2 * π) := by
|
||||||
|
intro x
|
||||||
|
simp
|
||||||
|
congr 1
|
||||||
|
exact periodic_circleMap 0 r x
|
||||||
|
--rw [← zero_add (2 * π)] at h
|
||||||
|
--have B := periodic_integrability4 (a₁ := π) (a₂ := 3 * π) t₀ two_pi_pos h
|
||||||
|
have B := intervalIntegral.integral_comp_add_right (a := 0) (b := 2 * π) (fun θ => f (circleMap 0 r θ)) π
|
||||||
|
rw [B]
|
||||||
|
let X := t₀.intervalIntegral_add_eq 0 (0 + π)
|
||||||
|
simp at X
|
||||||
|
rw [X]
|
||||||
|
simp
|
||||||
|
rw [add_comm]
|
||||||
|
@ -16,9 +16,10 @@ open scoped Interval Topology
|
|||||||
open Real Filter MeasureTheory intervalIntegral
|
open Real Filter MeasureTheory intervalIntegral
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.integrable_log_abs_f
|
theorem MeromorphicOn.integrable_log_abs_f₀
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{r : ℝ}
|
{r : ℝ}
|
||||||
|
-- WARNING: Not optimal. This needs to go
|
||||||
(hr : 0 < r)
|
(hr : 0 < r)
|
||||||
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
|
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
|
||||||
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) r)) :
|
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) r)) :
|
||||||
@ -111,10 +112,51 @@ theorem MeromorphicOn.integrable_log_abs_f
|
|||||||
rw [integrability_congr_changeDiscrete hU this]
|
rw [integrability_congr_changeDiscrete hU this]
|
||||||
|
|
||||||
have : ∀ x ∈ Metric.closedBall 0 r, F x = 0 := by
|
have : ∀ x ∈ Metric.closedBall 0 r, F x = 0 := by
|
||||||
sorry
|
intro x hx
|
||||||
|
let A := h₂f ⟨x, hx⟩
|
||||||
|
rw [← makeStronglyMeromorphicOn_changeOrder h₁f hx] at A
|
||||||
|
let B := ((stronglyMeromorphicOn_of_makeStronglyMeromorphicOn h₁f) x hx).order_eq_zero_iff.not.1
|
||||||
|
simp [A] at B
|
||||||
|
assumption
|
||||||
|
have : (fun z => log ‖F z‖) ∘ circleMap 0 r = 0 := by
|
||||||
|
funext x
|
||||||
|
simp
|
||||||
|
left
|
||||||
|
apply this
|
||||||
|
simp [abs_of_pos hr]
|
||||||
|
simp_rw [this]
|
||||||
|
apply intervalIntegral.intervalIntegrable_const
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.integrable_log_abs_f
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{r : ℝ}
|
||||||
|
-- WARNING: Not optimal. It suffices to be meromorphic on the Sphere
|
||||||
|
(h₁f : MeromorphicOn f (Metric.closedBall (0 : ℂ) |r|)) :
|
||||||
|
IntervalIntegrable (fun z ↦ log ‖f (circleMap 0 r z)‖) MeasureTheory.volume 0 (2 * π) := by
|
||||||
|
|
||||||
|
by_cases h₁r : r = 0
|
||||||
|
· rw [h₁r]
|
||||||
|
simp
|
||||||
|
· by_cases h₂r : 0 < r
|
||||||
|
· have : |r| = r := by
|
||||||
|
exact abs_of_pos h₂r
|
||||||
|
rw [this] at h₁f
|
||||||
|
exact MeromorphicOn.integrable_log_abs_f₀ h₂r h₁f
|
||||||
|
· have t₀ : 0 < -r := by
|
||||||
sorry
|
sorry
|
||||||
|
have : |r| = -r := by
|
||||||
|
apply abs_of_neg
|
||||||
|
exact Left.neg_pos_iff.mp t₀
|
||||||
|
rw [this] at h₁f
|
||||||
|
let A := MeromorphicOn.integrable_log_abs_f₀ t₀ h₁f
|
||||||
|
|
||||||
|
let B := integrability_congr_negRadius (f := fun z => log ‖f z‖) (r := -r)
|
||||||
|
let C := B A
|
||||||
|
simp at C
|
||||||
|
simpa
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.integrable_logpos_abs_f
|
theorem MeromorphicOn.integrable_logpos_abs_f
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
|
Loading…
Reference in New Issue
Block a user