Update lean
This commit is contained in:
@@ -297,7 +297,7 @@ lemma partialDeriv_fderivOn
|
||||
rw [fderiv_clm_apply]
|
||||
· simp
|
||||
· convert DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
apply ContDiffOn.differentiableOn _ (Preorder.le_refl 1)
|
||||
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 hf).2
|
||||
· simp
|
||||
|
||||
@@ -407,7 +407,7 @@ theorem partialDeriv_comm
|
||||
let f'' := (fderiv ℝ f' z)
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply (contDiff_succ_iff_fderiv.1 h).right.differentiable (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
apply (contDiff_succ_iff_fderiv.1 h).right.differentiable (Preorder.le_refl 1)
|
||||
|
||||
apply second_derivative_symmetric h₀ h₁ v₁ v₂
|
||||
|
||||
@@ -441,7 +441,7 @@ theorem partialDeriv_commOn
|
||||
have h₁ : HasFDerivAt f' f'' z := by
|
||||
apply DifferentiableAt.hasFDerivAt
|
||||
apply DifferentiableOn.differentiableAt _ (IsOpen.mem_nhds hs hz)
|
||||
apply ContDiffOn.differentiableOn _ (Submonoid.oneLE.proof_2 ℕ∞)
|
||||
apply ContDiffOn.differentiableOn _ (Preorder.le_refl 1)
|
||||
exact ((contDiffOn_succ_iff_fderiv_of_isOpen hs).1 h).2
|
||||
|
||||
have h₀' : ∀ᶠ (y : E) in nhds z, HasFDerivAt f (f' y) y := by
|
||||
|
Reference in New Issue
Block a user