Update analyticOn_zeroSet.lean
This commit is contained in:
parent
8a62e60b15
commit
1ca46cf454
|
@ -100,89 +100,18 @@ theorem AnalyticOn.order_eq_nat_iff'
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
{A : Finset U}
|
{A : Finset U}
|
||||||
(hf : AnalyticOn ℂ f U)
|
(hf : AnalyticOn ℂ f U)
|
||||||
(n : A → ℕ) :
|
(n : ℂ → ℕ) :
|
||||||
∀ a : A, (hf a (Subtype.coe_prop a.val)).order = n a → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a, g a ≠ 0) ∧ ∀ z, f z = (∏ a, (z - a) ^ (n a)) • g z := by
|
(∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a : A, g a ≠ 0) ∧ ∀ z, f z = (∏ a : A, (z - a) ^ (n a)) • g z := by
|
||||||
|
|
||||||
apply Finset.induction
|
apply Finset.induction (α := U) (p := fun A ↦ (∀ a ∈ A, (hf a.1 a.2).order = n a) → ∃ (g : ℂ → ℂ), AnalyticOn ℂ g U ∧ (∀ a : A, g a ≠ 0) ∧ ∀ z, f z = (∏ a : A, (z - a) ^ (n a)) • g z)
|
||||||
|
|
||||||
let a : A := by sorry
|
-- case empty
|
||||||
let b : ℂ := by sorry
|
simp
|
||||||
let u : U := by sorry
|
use f
|
||||||
|
simp
|
||||||
|
exact hf
|
||||||
|
|
||||||
let X := n a
|
-- case insert
|
||||||
have : a = (3 : ℂ) := by sorry
|
intro b₀ B hb iHyp
|
||||||
have : b ∈ ↑A := by sorry
|
intro hBinsert
|
||||||
have : ↑a ∈ U := by exact Subtype.coe_prop a.val
|
obtain ⟨g₀, h₁g₀, h₂g₀, h₃g₀⟩ := iHyp (fun a ha ↦ hBinsert a (Finset.mem_insert_of_mem ha))
|
||||||
|
|
||||||
let Y := ∀ a : A, (hf a (Subtype.coe_prop a.val)).order = n a
|
|
||||||
|
|
||||||
--∀ a : A, (hf (ha a)).order = ↑(n a) →
|
|
||||||
|
|
||||||
intro hn
|
|
||||||
obtain ⟨gloc, h₁gloc, h₂gloc, h₃gloc⟩ := (AnalyticAt.order_eq_nat_iff (hf z₀ hz₀) n).1 hn
|
|
||||||
|
|
||||||
-- Define a candidate function
|
|
||||||
let g : ℂ → ℂ := fun z ↦ if z = z₀ then gloc z₀ else (f z) / (z - z₀) ^ n
|
|
||||||
|
|
||||||
-- Describe g near z₀
|
|
||||||
have g_near_z₀ : ∀ᶠ (z : ℂ) in nhds z₀, g z = gloc z := by
|
|
||||||
rw [eventually_nhds_iff]
|
|
||||||
obtain ⟨t, h₁t, h₂t, h₃t⟩ := eventually_nhds_iff.1 h₃gloc
|
|
||||||
use t
|
|
||||||
constructor
|
|
||||||
· intro y h₁y
|
|
||||||
by_cases h₂y : y = z₀
|
|
||||||
· dsimp [g]; simp [h₂y]
|
|
||||||
· dsimp [g]; simp [h₂y]
|
|
||||||
rw [div_eq_iff_mul_eq, eq_comm, mul_comm]
|
|
||||||
exact h₁t y h₁y
|
|
||||||
norm_num
|
|
||||||
rw [sub_eq_zero]
|
|
||||||
tauto
|
|
||||||
· constructor
|
|
||||||
· assumption
|
|
||||||
· assumption
|
|
||||||
|
|
||||||
-- Describe g near points z₁ different from z₀
|
|
||||||
have g_near_z₁ {z₁ : ℂ} : z₁ ≠ z₀ → ∀ᶠ (z : ℂ) in nhds z₁, g z = f z / (z - z₀) ^ n := by
|
|
||||||
intro hz₁
|
|
||||||
rw [eventually_nhds_iff]
|
|
||||||
use {z₀}ᶜ
|
|
||||||
constructor
|
|
||||||
· intro y hy
|
|
||||||
simp at hy
|
|
||||||
simp [g, hy]
|
|
||||||
· exact ⟨isOpen_compl_singleton, hz₁⟩
|
|
||||||
|
|
||||||
-- Use g and show that it has all required properties
|
|
||||||
use g
|
|
||||||
constructor
|
|
||||||
· -- AnalyticOn ℂ g U
|
|
||||||
intro z h₁z
|
|
||||||
by_cases h₂z : z = z₀
|
|
||||||
· rw [h₂z]
|
|
||||||
apply AnalyticAt.congr h₁gloc
|
|
||||||
exact Filter.EventuallyEq.symm g_near_z₀
|
|
||||||
· simp_rw [eq_comm] at g_near_z₁
|
|
||||||
apply AnalyticAt.congr _ (g_near_z₁ h₂z)
|
|
||||||
apply AnalyticAt.div
|
|
||||||
exact hf z h₁z
|
|
||||||
apply AnalyticAt.pow
|
|
||||||
apply AnalyticAt.sub
|
|
||||||
apply analyticAt_id
|
|
||||||
apply analyticAt_const
|
|
||||||
simp
|
|
||||||
rw [sub_eq_zero]
|
|
||||||
tauto
|
|
||||||
· constructor
|
|
||||||
· simp [g]; tauto
|
|
||||||
· intro z
|
|
||||||
by_cases h₂z : z = z₀
|
|
||||||
· rw [h₂z, g_near_z₀.self_of_nhds]
|
|
||||||
exact h₃gloc.self_of_nhds
|
|
||||||
· rw [(g_near_z₁ h₂z).self_of_nhds]
|
|
||||||
simp [h₂z]
|
|
||||||
rw [div_eq_mul_inv, mul_comm, mul_assoc, inv_mul_cancel]
|
|
||||||
simp; norm_num
|
|
||||||
rw [sub_eq_zero]
|
|
||||||
tauto
|
|
||||||
|
|
Loading…
Reference in New Issue