Update meromorphicOn_decompose.lean
This commit is contained in:
parent
dfc67cec4a
commit
1c844b9978
@ -19,5 +19,28 @@ theorem MeromorphicOn.decompose
|
||||
(h₂f : ∃ z₀ ∈ U, f z₀ ≠ 0) :
|
||||
∃ g : ℂ → ℂ, (AnalyticOnNhd ℂ g U)
|
||||
∧ (∀ z ∈ U, g z ≠ 0)
|
||||
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p ∈ h₁f.divisor.support, (z-p) ) U) := by
|
||||
sorry
|
||||
∧ (Set.EqOn h₁f.makeStronglyMeromorphicOn (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p) * g z ) U) := by
|
||||
|
||||
let g₁ : ℂ → ℂ := f * (fun z ↦ ∏ᶠ p, (z - p) ^ (h₁f.divisor p))
|
||||
have h₁g₁ : MeromorphicOn g₁ U := by sorry
|
||||
let g := h₁g₁.makeStronglyMeromorphicOn
|
||||
have h₁g : MeromorphicOn g U := by sorry
|
||||
have h₂g : ∀ z : U, (h₁g z.1 z.2).order = 0 := by sorry
|
||||
have h₃g : StronglyMeromorphicOn g U := by sorry
|
||||
have h₄g : AnalyticOnNhd ℂ g U := by
|
||||
intro z hz
|
||||
apply StronglyMeromorphicAt.analytic (h₃g z hz)
|
||||
rw [h₂g ⟨z, hz⟩]
|
||||
use g
|
||||
constructor
|
||||
· exact h₄g
|
||||
· constructor
|
||||
· intro z hz
|
||||
rw [← (h₄g z hz).order_eq_zero_iff]
|
||||
|
||||
let A := (h₄g z hz).meromorphicAt_order
|
||||
let B := h₂g ⟨z, hz⟩
|
||||
sorry
|
||||
· intro z hz
|
||||
|
||||
sorry
|
||||
|
Loading…
Reference in New Issue
Block a user