working
This commit is contained in:
parent
4ff9c41ae3
commit
1c34aee7be
|
@ -254,11 +254,10 @@ theorem logabs_of_holomorphic_is_harmonic
|
||||||
rfl
|
rfl
|
||||||
rw [this]
|
rw [this]
|
||||||
have : ContDiff ℝ 2 (Complex.log ∘ f) := by sorry
|
have : ContDiff ℝ 2 (Complex.log ∘ f) := by sorry
|
||||||
have : Complex.laplace (⇑Complex.imCLM ∘ f) = ⇑Complex.imCLM ∘ Complex.laplace (f) := by
|
|
||||||
apply laplace_compContLin
|
|
||||||
|
|
||||||
|
have : Complex.laplace (⇑Complex.conjCLE ∘ f) = ⇑Complex.conjCLE ∘ Complex.laplace (f) := by
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
rw [laplace_compContLin this]
|
|
||||||
|
|
||||||
sorry
|
sorry
|
||||||
|
|
||||||
|
|
|
@ -72,3 +72,11 @@ theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff
|
||||||
exact h.differentiable one_le_two
|
exact h.differentiable one_le_two
|
||||||
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
|
||||||
exact h.differentiable one_le_two
|
exact h.differentiable one_le_two
|
||||||
|
|
||||||
|
|
||||||
|
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
|
||||||
|
Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
|
||||||
|
let l' := (l : F →L[ℝ] G)
|
||||||
|
have : Complex.laplace (l' ∘ f) = l' ∘ (Complex.laplace f) := by
|
||||||
|
exact laplace_compContLin h
|
||||||
|
exact this
|
||||||
|
|
Loading…
Reference in New Issue