working
This commit is contained in:
		@@ -254,11 +254,10 @@ theorem logabs_of_holomorphic_is_harmonic
 | 
			
		||||
      rfl
 | 
			
		||||
    rw [this]
 | 
			
		||||
    have : ContDiff ℝ 2 (Complex.log ∘ f) := by sorry
 | 
			
		||||
    have : Complex.laplace (⇑Complex.imCLM ∘ f) = ⇑Complex.imCLM ∘ Complex.laplace (f) := by
 | 
			
		||||
      apply laplace_compContLin
 | 
			
		||||
 | 
			
		||||
    have : Complex.laplace (⇑Complex.conjCLE ∘ f) = ⇑Complex.conjCLE ∘ Complex.laplace (f) := by
 | 
			
		||||
      
 | 
			
		||||
      sorry
 | 
			
		||||
    rw [laplace_compContLin this]
 | 
			
		||||
 | 
			
		||||
    sorry
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -72,3 +72,11 @@ theorem laplace_compContLin {f : ℂ → F} {l : F →L[ℝ] G} (h : ContDiff 
 | 
			
		||||
  exact h.differentiable one_le_two
 | 
			
		||||
  exact (partialDeriv_contDiff ℝ h 1).differentiable le_rfl
 | 
			
		||||
  exact h.differentiable one_le_two
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
theorem laplace_compCLE {f : ℂ → F} {l : F ≃L[ℝ] G} (h : ContDiff ℝ 2 f) :
 | 
			
		||||
  Complex.laplace (l ∘ f) = l ∘ (Complex.laplace f) := by
 | 
			
		||||
  let l' := (l : F →L[ℝ] G)
 | 
			
		||||
  have : Complex.laplace (l' ∘ f) = l' ∘ (Complex.laplace f) := by
 | 
			
		||||
    exact laplace_compContLin h
 | 
			
		||||
  exact this
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user