From 1918cc01398cb723a3dd4d7c40e7464d347753c6 Mon Sep 17 00:00:00 2001 From: Stefan Kebekus Date: Fri, 26 Apr 2024 16:02:56 +0200 Subject: [PATCH] Update harmonic.lean --- nevanlinna/harmonic.lean | 231 ++++++++++++++++++++++++++++++++++++--- 1 file changed, 216 insertions(+), 15 deletions(-) diff --git a/nevanlinna/harmonic.lean b/nevanlinna/harmonic.lean index 658ff92..b387bfa 100644 --- a/nevanlinna/harmonic.lean +++ b/nevanlinna/harmonic.lean @@ -1,5 +1,7 @@ import Mathlib.Analysis.Complex.Basic import Mathlib.Analysis.Calculus.LineDeriv.Basic +import Mathlib.Analysis.SpecialFunctions.ExpDeriv +import Mathlib.Analysis.SpecialFunctions.Trigonometric.Deriv -- Harmonic functions on the plane @@ -7,19 +9,187 @@ import Mathlib.Analysis.Calculus.LineDeriv.Basic noncomputable def laplace' : (ℂ → ℝ) → (ℂ → ℝ) := by intro f - let f₁ := fun x ↦ lineDeriv ℝ f x ⟨1, 0⟩ - let g₁ := fun x ↦ lineDeriv ℝ f x ⟨1, 0⟩ - let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x ⟨1, 0⟩ - let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0, 1⟩ - let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x ⟨0, 1⟩ + let f₁ := fun x ↦ lineDeriv ℝ f x 1 + let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x 1 + let f₂ := fun x ↦ lineDeriv ℝ f x Complex.I + let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x Complex.I exact f₁₁ + f₂₂ -example : ∀ z₀ : ℂ, laplace' (fun z ↦ z.re) z₀ = 0 := by - intro z₀ - - unfold laplace' lineDeriv +example : laplace' (fun z ↦ z.re) = fun z ↦ 0 := by + + unfold laplace' lineDeriv simp + conv => + lhs + intro x + arg 1 + intro t + rw [deriv_add] <;> tactic => try fun_prop + simp + rfl + +example : laplace' (fun z ↦ (z*z).re) = fun z ↦ 0 := by + + unfold laplace' lineDeriv + simp + + conv => + lhs + intro x + simp + arg 1 + arg 1 + intro t + rw [deriv_sub] <;> tactic => try fun_prop + simp + rw [deriv_mul] <;> tactic => try fun_prop + simp + rw [deriv_add] <;> tactic => try fun_prop + simp + + conv => + lhs + intro x + arg 1 + rw [deriv_add] <;> tactic => try fun_prop + rw [deriv_add] <;> tactic => try fun_prop + simp + rw [one_add_one_eq_two] + + + conv => + lhs + intro x + arg 2 + conv => + arg 1 + intro t + rw [deriv_sub] <;> tactic => try fun_prop + rw [deriv_mul] <;> tactic => try fun_prop + simp + rw [deriv_mul] <;> tactic => try fun_prop + simp + rw [deriv_add] <;> tactic => try fun_prop + rw [deriv_add] <;> tactic => try fun_prop + simp + + conv => + lhs + intro x + rw [deriv_add] <;> tactic => try fun_prop + rw [deriv_add] <;> tactic => try fun_prop + simp + + group + +example : laplace' (fun z ↦ (Complex.exp z).re) = fun z ↦ 0 := by + + unfold laplace' lineDeriv + simp + + conv => + lhs + arg 1 + intro x + arg 1 + intro t + arg 1 + intro t₁ + rw [Complex.exp_add] + rw [Complex.exp_add] + + conv => + lhs + arg 1 + intro x + arg 1 + intro t + simp + conv => + rhs + arg 1 + intro x₁ + rw [Complex.exp_re] + simp + rw [Real.deriv_exp] + simp + + conv => + lhs + arg 1 + intro x + simp + rhs + arg 1 + intro x + rw [Complex.exp_re] + + conv => + lhs + lhs + intro x + rhs + lhs + intro x₁ + simp + + simp + + conv => + lhs + rhs + intro x + lhs + intro t + arg 1 + intro t₁ + rw [Complex.exp_add] + rw [Complex.exp_add] + simp + rw [Complex.exp_re] + rw [Complex.exp_im] + simp + + conv => + lhs + rhs + intro x + lhs + intro t + + simp + + + + + + + -- oops + + + + + conv => + lhs + + rw [Complex.exp_add] + + rw [deriv_mul] <;> tactic => try fun_prop + + + + sorry + + rw [deriv_add] <;> tactic => try fun_prop + + + + + + + + sorry noncomputable def laplace : (ℂ → ℝ) → (ℂ → ℝ) := by @@ -39,13 +209,33 @@ noncomputable def laplace : (ℂ → ℝ) → (ℂ → ℝ) := by example : ∀ z₀ : ℂ, laplace (fun z ↦ (z*z).re) z₀ = 0 := by - intro z₀ - + intro z₀ unfold laplace dsimp [lineDeriv] simp - - sorry + conv => + lhs + lhs + arg 1 + intro t + rw [deriv_sub] <;> tactic => try fun_prop + rw [deriv_mul] <;> tactic => try fun_prop + rw [deriv_const_add] + simp + ring_nf + conv => + lhs + rhs + arg 1 + intro t + rw [deriv_sub] <;> tactic => try fun_prop + rw [deriv_const] + rw [deriv_mul] <;> tactic => try fun_prop + rw [deriv_const_add] + simp + ring_nf + rw [deriv_const_add, deriv_sub] <;> try fun_prop + simp example : ∀ z₀ : ℂ, laplace (fun z ↦ (Complex.exp z).re) z₀ = 0 := by intro z₀ @@ -57,8 +247,19 @@ example : ∀ z₀ : ℂ, laplace (fun z ↦ (Complex.exp z).re) z₀ = 0 := by sorry example : deriv (fun (t : ℝ) ↦ 2 + t) = fun (t : ℝ) ↦ 1 := by - -- Does not work: simp [deriv.add] - sorry + -- in my experience with the library, more results are stated about + -- `HasDerivAt` than about equality of `deriv` + rw [deriv_eq] + + intro x + + -- I guessed the name `HasDerivAt.add`, which didn't work, but the + -- autocomplete dropdown showed `add_const` and `const_add` too + apply HasDerivAt.const_add + + -- I assumed this was in the library, and `apply?` found it + exact hasDerivAt_id' x + example : laplace (fun z ↦ (Complex.exp z).re) = 0 := by have : (fun z => (Complex.exp z).re) = (fun z => Real.exp z.re * Real.cos z.im) := by