Experimenting…
This commit is contained in:
parent
98efcf9f87
commit
187781f971
|
@ -0,0 +1,148 @@
|
|||
import Mathlib.Analysis.Complex.Basic
|
||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||
|
||||
-- Harmonic functions on the plane
|
||||
|
||||
|
||||
noncomputable def laplace' : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||
intro f
|
||||
|
||||
let f₁ := fun x ↦ lineDeriv ℝ f x ⟨1, 0⟩
|
||||
let g₁ := fun x ↦ lineDeriv ℝ f x ⟨1, 0⟩
|
||||
let f₁₁ := fun x ↦ lineDeriv ℝ f₁ x ⟨1, 0⟩
|
||||
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0, 1⟩
|
||||
let f₂₂ := fun x ↦ lineDeriv ℝ f₂ x ⟨0, 1⟩
|
||||
exact f₁₁ + f₂₂
|
||||
|
||||
example : ∀ z₀ : ℂ, laplace' (fun z ↦ z.re) z₀ = 0 := by
|
||||
intro z₀
|
||||
|
||||
unfold laplace' lineDeriv
|
||||
simp
|
||||
|
||||
sorry
|
||||
|
||||
noncomputable def laplace : (ℂ → ℝ) → (ℂ → ℝ) := by
|
||||
intro f
|
||||
|
||||
let F : ℝ × ℝ → ℝ := fun x ↦ f (x.1 + x.2 * Complex.I)
|
||||
|
||||
let e₁ : ℝ × ℝ := ⟨1, 0⟩
|
||||
let e₂ : ℝ × ℝ := ⟨0, 1⟩
|
||||
|
||||
let F₁ := fun x ↦ lineDeriv ℝ F x e₁
|
||||
let F₁₁ := fun x ↦ lineDeriv ℝ F₁ x e₁
|
||||
let F₂ := fun x ↦ lineDeriv ℝ F x e₂
|
||||
let F₂₂ := fun x ↦ lineDeriv ℝ F₂ x e₂
|
||||
|
||||
exact fun x ↦ F₁₁ ⟨x.1, x.2⟩ + F₂₂ ⟨x.1, x.2⟩
|
||||
|
||||
|
||||
example : ∀ z₀ : ℂ, laplace (fun z ↦ (z*z).re) z₀ = 0 := by
|
||||
intro z₀
|
||||
|
||||
unfold laplace
|
||||
dsimp [lineDeriv]
|
||||
simp
|
||||
|
||||
sorry
|
||||
|
||||
example : ∀ z₀ : ℂ, laplace (fun z ↦ (Complex.exp z).re) z₀ = 0 := by
|
||||
intro z₀
|
||||
|
||||
unfold laplace
|
||||
dsimp [lineDeriv]
|
||||
simp
|
||||
|
||||
sorry
|
||||
|
||||
example : deriv (fun (t : ℝ) ↦ 2 + t) = fun (t : ℝ) ↦ 1 := by
|
||||
-- Does not work: simp [deriv.add]
|
||||
sorry
|
||||
|
||||
example : laplace (fun z ↦ (Complex.exp z).re) = 0 := by
|
||||
have : (fun z => (Complex.exp z).re) = (fun z => Real.exp z.re * Real.cos z.im) := by
|
||||
funext z
|
||||
rw [Complex.exp_re]
|
||||
rw [this]
|
||||
|
||||
unfold laplace
|
||||
simp
|
||||
|
||||
have F₁ : (fun (x : ℝ × ℝ) => lineDeriv ℝ (fun (t : ℝ × ℝ) => Real.exp t.1 * Real.cos t.2) x ⟨1, 0⟩) = ((fun (x : ℝ × ℝ) => (Real.exp x.1 * Real.cos x.2))) := by
|
||||
funext x
|
||||
dsimp [lineDeriv]
|
||||
simp
|
||||
left
|
||||
have t₁ : (fun x_1 => Real.exp (x.1 + x_1)) = (fun x_1 => Real.exp x.1 * Real.exp x_1) := by
|
||||
funext t
|
||||
exact Real.exp_add x.1 t
|
||||
rw [t₁]
|
||||
simp
|
||||
|
||||
have F₂ : (fun (x : ℝ × ℝ) => lineDeriv ℝ (fun (t : ℝ × ℝ) => Real.exp t.1 * Real.sin t.2) x ⟨0, 1⟩) = ((fun (x : ℝ × ℝ) => (Real.exp x.1 * Real.cos x.2))) := by
|
||||
funext x
|
||||
|
||||
dsimp [lineDeriv]
|
||||
simp
|
||||
|
||||
have t₁ : (fun t => Real.sin (x.2 + t)) = (Real.sin ∘ (fun t => x.2 + t)) := by
|
||||
rfl
|
||||
rw [t₁]
|
||||
rw [deriv.comp]
|
||||
simp
|
||||
|
||||
have : deriv (fun (t : ℝ) ↦ 2 + t) = fun (t : ℝ) ↦ 1 := by
|
||||
simp [deriv.add]
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
rw [this]
|
||||
simp
|
||||
· exact Real.differentiableAt_sin
|
||||
· -- DifferentiableAt ℝ (fun t => x.2 + t) 0
|
||||
sorry
|
||||
|
||||
|
||||
rw [this]
|
||||
|
||||
sorry
|
||||
|
||||
have : deriv (fun x_1 => Real.exp (x_1 + x_1)) 0 = 2 := by
|
||||
simp
|
||||
group
|
||||
|
||||
|
||||
rw [this]
|
||||
simp
|
||||
|
||||
have : deriv (fun t => Real.cos (x.2 + t * y.2)) = (fun t => -y.2 * Real.sin (x.2 + t * y.2)) := by
|
||||
funext t₀
|
||||
have t₁ : (fun t => Real.cos (x.2 + t * y.2)) = (Real.cos ∘ (fun t => x.2 + t * y.2)) := by
|
||||
rfl
|
||||
rw [t₁]
|
||||
rw [deriv.comp]
|
||||
simp
|
||||
· group
|
||||
· exact Real.differentiableAt_cos
|
||||
· simp
|
||||
|
||||
simp
|
||||
simp
|
||||
|
||||
sorry
|
||||
|
||||
let XX := fderiv ℝ (fun (x : ℝ × ℝ) => Real.exp x.1 * Real.cos x.2)
|
||||
simp at XX
|
||||
|
||||
have : fderiv ℝ fun x => Real.exp x.1 * Real.cos x.2 = 0 := by
|
||||
|
||||
sorry
|
||||
|
||||
funext z
|
||||
simp
|
||||
funext
|
||||
|
||||
let ZZ := Complex.exp_re z
|
||||
sorry
|
|
@ -84,6 +84,7 @@ theorem JensenFormula₂ :
|
|||
rw [this]
|
||||
|
||||
|
||||
|
||||
have : ∀ z : ℂ, log (Complex.abs z) = 1/2 * Complex.log z + 1/2 * Complex.log (conj z) := by
|
||||
intro z
|
||||
|
||||
|
|
Loading…
Reference in New Issue