working
This commit is contained in:
parent
4b6cdcc76a
commit
17705601c2
|
@ -5,8 +5,8 @@ theorem harmonic_meanValue
|
|||
{f : ℂ → ℝ}
|
||||
{z : ℂ}
|
||||
(ρ R : ℝ)
|
||||
(hR : R > 0)
|
||||
(hρ : ρ > R)
|
||||
(hR : 0 < R)
|
||||
(hρ : R < ρ)
|
||||
(hf : ∀ x ∈ Metric.ball z ρ , HarmonicAt f x)
|
||||
:
|
||||
(∫ (x : ℝ) in (0)..2 * Real.pi, f (circleMap z R x)) = 2 * Real.pi * f z
|
||||
|
|
|
@ -1,13 +1,48 @@
|
|||
import Nevanlinna.harmonicAt_examples
|
||||
import Nevanlinna.harmonicAt_meanValue
|
||||
|
||||
lemma l₀
|
||||
{x₁ x₂ : ℝ} :
|
||||
(circleMap 0 1 x₁) * (circleMap 0 1 x₂) = circleMap 0 1 (x₁+x₂) := by
|
||||
dsimp [circleMap]
|
||||
simp
|
||||
rw [add_mul, Complex.exp_add]
|
||||
|
||||
|
||||
lemma int₀
|
||||
{a : ℂ}
|
||||
(ha : a ∈ Metric.ball 0 1)
|
||||
:
|
||||
(ha : a ∈ Metric.ball 0 1) :
|
||||
∫ (x : ℝ) in (0)..2 * Real.pi, Real.log ‖circleMap 0 1 x - a‖ = 0 := by
|
||||
|
||||
|
||||
have {x : ℝ} : ‖(circleMap 0 1 x) - a‖ = ‖(circleMap 0 1 x) - a‖ := by
|
||||
calc ‖(circleMap 0 1 x) - a‖
|
||||
_ = 1 * ‖(circleMap 0 1 x) - a‖ := by exact Eq.symm (one_mul ‖circleMap 0 1 x - a‖)
|
||||
_ = ‖(circleMap 0 1 (-x))‖ * ‖(circleMap 0 1 x) - a‖ := by
|
||||
have : ‖(circleMap 0 1 (-x))‖ = 1 := by
|
||||
rw [Complex.norm_eq_abs, abs_circleMap_zero]
|
||||
simp
|
||||
rw [this]
|
||||
_ = ‖(circleMap 0 1 (-x)) * ((circleMap 0 1 x) - a)‖ := by
|
||||
exact Eq.symm (NormedField.norm_mul' (circleMap 0 1 (-x)) (circleMap 0 1 x - a))
|
||||
_ = ‖(circleMap 0 1 (-x)) * (circleMap 0 1 x) - (circleMap 0 1 (-x)) * a‖ := by
|
||||
rw [mul_sub]
|
||||
|
||||
_ =
|
||||
sorry
|
||||
|
||||
conv =>
|
||||
left
|
||||
arg 1
|
||||
intro x
|
||||
rw [← this]
|
||||
simp
|
||||
|
||||
have hf : ∀ x ∈ Metric.ball 0 2, HarmonicAt F x := by sorry
|
||||
|
||||
sorry
|
||||
|
||||
|
||||
|
||||
theorem jensen_case_R_eq_one
|
||||
(f : ℂ → ℂ)
|
||||
|
@ -25,15 +60,17 @@ theorem jensen_case_R_eq_one
|
|||
|
||||
let logAbsF := fun w ↦ Real.log ‖F w‖
|
||||
|
||||
have t₀ : ∀ z, HarmonicAt logAbsF z := by
|
||||
intro z
|
||||
have t₀ : ∀ z ∈ Metric.ball 0 2, HarmonicAt logAbsF z := by
|
||||
intro z _
|
||||
apply logabs_of_holomorphicAt_is_harmonic
|
||||
apply h₁F.holomorphicAt
|
||||
exact h₂F z
|
||||
|
||||
have t₁ : (∫ (x : ℝ) in (0)..2 * Real.pi, logAbsF (circleMap 0 1 x)) = 2 * Real.pi * logAbsF 0 := by
|
||||
apply harmonic_meanValue t₀ 1
|
||||
exact Real.zero_lt_one
|
||||
have hR : (0 : ℝ) < (1 : ℝ) := by apply Real.zero_lt_one
|
||||
have hρ : (1 : ℝ) < (2 : ℝ) := by linarith
|
||||
apply harmonic_meanValue 2 1 hR hρ t₀
|
||||
|
||||
|
||||
have t₂ : ∀ s, f (a s) = 0 := by
|
||||
intro s
|
||||
|
|
Loading…
Reference in New Issue