diff --git a/Nevanlinna/meromorphicOn.lean b/Nevanlinna/meromorphicOn.lean index 94bef60..fe5e141 100644 --- a/Nevanlinna/meromorphicOn.lean +++ b/Nevanlinna/meromorphicOn.lean @@ -2,7 +2,6 @@ import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt -import Nevanlinna.meromorphicOn_divisor import Nevanlinna.stronglyMeromorphicOn import Nevanlinna.mathlibAddOn diff --git a/Nevanlinna/meromorphicOn_divisor.lean b/Nevanlinna/meromorphicOn_divisor.lean index 793392e..94353f4 100644 --- a/Nevanlinna/meromorphicOn_divisor.lean +++ b/Nevanlinna/meromorphicOn_divisor.lean @@ -2,6 +2,7 @@ import Mathlib.Analysis.Analytic.Meromorphic import Nevanlinna.analyticAt import Nevanlinna.divisor import Nevanlinna.meromorphicAt +import Nevanlinna.meromorphicOn import Nevanlinna.stronglyMeromorphicOn @@ -183,17 +184,33 @@ theorem StronglyMeromorphicOn.analyticOnNhd tauto assumption + theorem StronglyMeromorphicOn.support_divisor {f : ℂ → ℂ} {U : Set ℂ} - (hU : IsPreconnected U) + (hU : IsConnected U) (h₁f : StronglyMeromorphicOn f U) - (h₂f : ∃ u ∈ U, f u ≠ 0) : + (h₂f : ∃ u : U, f u ≠ 0) : U ∩ f⁻¹' {0} = (Function.support h₁f.meromorphicOn.divisor) := by ext u constructor - · sorry + · intro hu + unfold MeromorphicOn.divisor + simp [MeromorphicOn.order_ne_top hU h₁f h₂f ⟨u, hu.1⟩] + use hu.1 + rw [(h₁f u hu.1).order_eq_zero_iff] + simp + exact hu.2 · intro hu simp at hu - sorry + let A := h₁f.meromorphicOn.divisor.supportInU hu + constructor + · exact h₁f.meromorphicOn.divisor.supportInU hu + · simp + let B := (h₁f u A).order_eq_zero_iff.not + simp at B + rw [← B] + unfold MeromorphicOn.divisor at hu + simp [A] at hu + exact hu.1