Update analyticOn_zeroSet.lean
This commit is contained in:
parent
6d0870d533
commit
1160beac5e
|
@ -359,13 +359,10 @@ theorem AnalyticOnCompact.eliminateZeros
|
||||||
|
|
||||||
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
let A₁ := ι⁻¹' (U ∩ f⁻¹' {0})
|
||||||
|
|
||||||
have t₁ : (U ∩ f⁻¹' {0}).Finite := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
have : A₁.Finite := by
|
have : A₁.Finite := by
|
||||||
apply Set.Finite.preimage
|
apply Set.Finite.preimage
|
||||||
exact Set.injOn_subtype_val
|
exact Set.injOn_subtype_val
|
||||||
exact t₁
|
exact finiteZeros h₁U h₂U h₁f h₂f
|
||||||
let A := this.toFinset
|
let A := this.toFinset
|
||||||
|
|
||||||
let n : ℂ → ℕ := by
|
let n : ℂ → ℕ := by
|
||||||
|
@ -375,7 +372,12 @@ theorem AnalyticOnCompact.eliminateZeros
|
||||||
· exact 0
|
· exact 0
|
||||||
|
|
||||||
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
have hn : ∀ a ∈ A, (h₁f a a.2).order = n a := by
|
||||||
sorry
|
intro a _
|
||||||
|
dsimp [n]
|
||||||
|
simp
|
||||||
|
rw [eq_comm]
|
||||||
|
apply XX h₁U
|
||||||
|
exact h₂f
|
||||||
|
|
||||||
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := AnalyticOn.eliminateZeros (A := A) h₁f n hn
|
||||||
use g
|
use g
|
||||||
|
|
Loading…
Reference in New Issue