Update specialFunctions_Integrals.lean
This commit is contained in:
parent
bc8fed96b0
commit
0cc0c81508
|
@ -66,9 +66,10 @@ theorem logInt
|
||||||
lemma int₁ :
|
lemma int₁ :
|
||||||
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
∫ x in (0)..(2 * π), log ‖circleMap 0 1 x - 1‖ = 0 := by
|
||||||
|
|
||||||
|
have {x : ℝ} : log ‖circleMap 0 1 x - 1‖ = log (4 * sin (x / 2) ^ 2) / 2 := by
|
||||||
|
dsimp [Complex.abs]
|
||||||
have {x : ℝ} : Complex.normSq (circleMap 0 1 x - 1) = 2 - 2 * cos x := by
|
rw [log_sqrt (Complex.normSq_nonneg (circleMap 0 1 x - 1))]
|
||||||
|
congr
|
||||||
calc Complex.normSq (circleMap 0 1 x - 1)
|
calc Complex.normSq (circleMap 0 1 x - 1)
|
||||||
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
_ = (cos x - 1) * (cos x - 1) + sin x * sin x := by
|
||||||
dsimp [circleMap]
|
dsimp [circleMap]
|
||||||
|
@ -79,35 +80,35 @@ lemma int₁ :
|
||||||
_ = 2 - 2 * cos x := by
|
_ = 2 - 2 * cos x := by
|
||||||
rw [sin_sq_add_cos_sq]
|
rw [sin_sq_add_cos_sq]
|
||||||
norm_num
|
norm_num
|
||||||
|
|
||||||
|
|
||||||
have {x : ℝ} : 2 - 2 * cos x = 4 * sin (x / 2) ^ 2 := by
|
|
||||||
calc 2 - 2 * cos x
|
|
||||||
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
_ = 2 - 2 * cos (2 * (x / 2)) := by
|
||||||
rw [← mul_div_assoc]
|
rw [← mul_div_assoc]
|
||||||
congr; norm_num
|
congr; norm_num
|
||||||
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
_ = 4 - 4 * Real.cos (x / 2) ^ 2 := by
|
||||||
rw [cos_two_mul]
|
rw [cos_two_mul]
|
||||||
norm_num
|
ring
|
||||||
_ = 4 * sin (x / 2) ^ 2 := by
|
_ = 4 * sin (x / 2) ^ 2 := by
|
||||||
nth_rw 1 [← mul_one 4]
|
nth_rw 1 [← mul_one 4, ← sin_sq_add_cos_sq (x / 2)]
|
||||||
nth_rw 1 [← sin_sq_add_cos_sq (x / 2)]
|
ring
|
||||||
rw [mul_add]
|
simp_rw [this]
|
||||||
abel
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
dsimp [Complex.abs]
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
have : ∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2) = 2 * ∫ (x : ℝ) in (0)..π, log (4 * sin x ^ 2) := by
|
||||||
|
have : 1 = 2 * (2 : ℝ)⁻¹ := by exact Eq.symm (mul_inv_cancel_of_invertible 2)
|
||||||
|
nth_rw 1 [← one_mul (∫ (x : ℝ) in (0)..2 * π, log (4 * sin (x / 2) ^ 2))]
|
||||||
|
rw [← mul_inv_cancel_of_invertible 2, mul_assoc]
|
||||||
|
let f := fun y ↦ log (4 * sin y ^ 2)
|
||||||
|
have {x : ℝ} : log (4 * sin (x / 2) ^ 2) = f (x / 2) := by simp
|
||||||
|
conv =>
|
||||||
|
left
|
||||||
|
right
|
||||||
|
right
|
||||||
|
arg 1
|
||||||
|
intro x
|
||||||
|
rw [this]
|
||||||
|
rw [intervalIntegral.inv_mul_integral_comp_div 2]
|
||||||
|
simp
|
||||||
|
rw [this]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue