Merge branch 'main' of git.cplx.vm.uni-freiburg.de:kebekus/nevanlinna
This commit is contained in:
commit
0c15de05b8
@ -1,49 +1,40 @@
|
|||||||
import Mathlib.Analysis.Calculus.Conformal.NormedSpace
|
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Basic
|
|
||||||
import Mathlib.Analysis.Calculus.ContDiff.Defs
|
|
||||||
import Mathlib.Analysis.Calculus.Deriv.Linear
|
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.Basic
|
|
||||||
import Mathlib.Analysis.Calculus.FDeriv.RestrictScalars
|
|
||||||
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
import Mathlib.Analysis.Calculus.LineDeriv.Basic
|
||||||
import Mathlib.Analysis.Complex.Basic
|
|
||||||
import Mathlib.Analysis.Complex.CauchyIntegral
|
|
||||||
import Mathlib.Analysis.Complex.Conformal
|
|
||||||
import Mathlib.Analysis.Complex.RealDeriv
|
import Mathlib.Analysis.Complex.RealDeriv
|
||||||
|
|
||||||
variable {z : ℂ} {f : ℂ → ℂ}
|
variable {z : ℂ} {f : ℂ → ℂ}
|
||||||
|
|
||||||
example (h : DifferentiableAt ℂ f z) : f z = 0 := by
|
theorem CauchyRiemann₁ : (DifferentiableAt ℂ f z)
|
||||||
|
→ (fderiv ℝ f z) Complex.I = Complex.I * (fderiv ℝ f z) 1 := by
|
||||||
|
intro h
|
||||||
|
rw [DifferentiableAt.fderiv_restrictScalars ℝ h]
|
||||||
|
nth_rewrite 1 [← mul_one Complex.I]
|
||||||
|
exact ContinuousLinearMap.map_smul_of_tower (fderiv ℂ f z) Complex.I 1
|
||||||
|
|
||||||
let A := fderiv ℂ f z
|
theorem CauchyRiemann₂ : (DifferentiableAt ℂ f z)
|
||||||
let B := fderiv ℝ f
|
→ lineDeriv ℝ f z Complex.I = Complex.I * lineDeriv ℝ f z 1 := by
|
||||||
|
intro h
|
||||||
|
rw [DifferentiableAt.lineDeriv_eq_fderiv (h.restrictScalars ℝ)]
|
||||||
|
rw [DifferentiableAt.lineDeriv_eq_fderiv (h.restrictScalars ℝ)]
|
||||||
|
exact CauchyRiemann₁ h
|
||||||
|
|
||||||
let C : HasFDerivAt f (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)) z := h.hasFDerivAt.restrictScalars ℝ
|
theorem CauchyRiemann₃ : (DifferentiableAt ℂ f z)
|
||||||
let D := ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z)
|
→ (lineDeriv ℝ (Complex.reCLM ∘ f) z 1 = lineDeriv ℝ (Complex.imCLM ∘ f) z Complex.I)
|
||||||
let E := D 1
|
∧ (lineDeriv ℝ (Complex.reCLM ∘ f) z Complex.I = -lineDeriv ℝ (Complex.imCLM ∘ f) z 1)
|
||||||
let F := D Complex.I
|
:= by
|
||||||
|
|
||||||
have : A (Complex.I • 1) = Complex.I • (A 1) := by
|
intro h
|
||||||
exact ContinuousLinearMap.map_smul_of_tower A Complex.I 1
|
|
||||||
|
|
||||||
let AR := (ContinuousLinearMap.restrictScalars ℝ (fderiv ℂ f z))
|
have ContinuousLinearMap.comp_lineDeriv : ∀ w : ℂ, ∀ l : ℂ →L[ℝ] ℝ, lineDeriv ℝ (l ∘ f) z w = l ((fderiv ℝ f z) w) := by
|
||||||
have : AR (Complex.I • 1) = Complex.I • (AR 1) := by
|
intro w l
|
||||||
exact this
|
rw [DifferentiableAt.lineDeriv_eq_fderiv]
|
||||||
|
rw [fderiv.comp]
|
||||||
|
simp
|
||||||
|
fun_prop
|
||||||
|
exact h.restrictScalars ℝ
|
||||||
|
apply (ContinuousLinearMap.differentiableAt l).comp
|
||||||
|
exact h.restrictScalars ℝ
|
||||||
|
|
||||||
let f₂ := fun x ↦ lineDeriv ℝ f x ⟨0,1⟩
|
repeat
|
||||||
have : lineDeriv ℝ f z Complex.I = (fderiv ℝ f z) Complex.I := by
|
rw [ContinuousLinearMap.comp_lineDeriv]
|
||||||
apply DifferentiableAt.lineDeriv_eq_fderiv
|
rw [CauchyRiemann₁ h, Complex.I_mul]
|
||||||
apply h.restrictScalars ℝ
|
simp
|
||||||
|
|
||||||
have : D Complex.I = Complex.I * (D 1) := by
|
|
||||||
-- x
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
|
||||||
have : HasFDerivAt f A z := by
|
|
||||||
exact DifferentiableAt.hasFDerivAt h
|
|
||||||
|
|
||||||
have : HasFDerivAt f (B z) z := by
|
|
||||||
sorry
|
|
||||||
|
|
||||||
|
|
||||||
sorry
|
|
||||||
|
Loading…
Reference in New Issue
Block a user