Update complexHarmonic.lean
This commit is contained in:
parent
4acac60a4f
commit
06f8de2f56
|
@ -128,13 +128,20 @@ theorem logabs_of_holomorphic_is_harmonic
|
|||
have normSq_is_real_C2 : ContDiff ℝ 2 Complex.normSq := by
|
||||
unfold Complex.normSq
|
||||
simp
|
||||
conv =>
|
||||
arg 3
|
||||
intro x
|
||||
rw [← Complex.reCLM_apply, ← Complex.imCLM_apply]
|
||||
apply ContDiff.add
|
||||
apply ContDiff.mul
|
||||
sorry
|
||||
apply ContinuousLinearMap.contDiff Complex.reCLM
|
||||
apply ContinuousLinearMap.contDiff Complex.reCLM
|
||||
apply ContDiff.mul
|
||||
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||
apply ContinuousLinearMap.contDiff Complex.imCLM
|
||||
|
||||
constructor
|
||||
· -- logabs f is real C²
|
||||
|
||||
have : (fun z ↦ Real.log ‖f z‖) = (Real.log ∘ Complex.normSq ∘ f) / 2 := by
|
||||
funext z
|
||||
simp
|
||||
|
@ -143,8 +150,10 @@ theorem logabs_of_holomorphic_is_harmonic
|
|||
rw [Real.log_sqrt]
|
||||
exact Complex.normSq_nonneg (f z)
|
||||
rw [this]
|
||||
have : Real.log ∘ ⇑Complex.normSq ∘ f / 2 = (fun z ↦ (1 / 2) • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
||||
sorry
|
||||
have : Real.log ∘ ⇑Complex.normSq ∘ f / 2 = (fun z ↦ (1 / (2 : ℝ)) • ((Real.log ∘ ⇑Complex.normSq ∘ f) z)) := by
|
||||
funext z
|
||||
simp
|
||||
exact div_eq_inv_mul (Real.log (Complex.normSq (f z))) 2
|
||||
rw [this]
|
||||
|
||||
apply contDiff_iff_contDiffAt.2
|
||||
|
@ -160,4 +169,5 @@ theorem logabs_of_holomorphic_is_harmonic
|
|||
exact ContDiff.contDiffAt f_is_real_C2
|
||||
|
||||
· -- Laplace vanishes
|
||||
|
||||
sorry
|
||||
|
|
Loading…
Reference in New Issue