Working…

This commit is contained in:
Stefan Kebekus 2025-01-03 11:32:28 +01:00
parent e7320231e9
commit 054edd49a7
2 changed files with 74 additions and 9 deletions

View File

@ -67,16 +67,32 @@ theorem Nevanlinna_counting₁₁
simp [h']
clear h'
have A := (hf.restrict |r|).divisor_add_const₂ a h
have A' : 0 ≤ -((MeromorphicOn.add (MeromorphicOn.restrict hf |r|) (MeromorphicOn.const a)).divisor x) := by
apply Int.le_neg_of_le_neg
simp
exact Int.le_of_lt A
simp [A']
clear A A'
simp [h]
linarith
sorry
exact (hf.restrict |r|).divisor_add_const₃ a h
--
intro x
contrapose
simp
intro hx
rw [hx]
tauto
--
intro x
contrapose
simp
intro hx
have : 0 ≤ (hf.restrict |r|).divisor x := by
rw [hx]
have G := (hf.restrict |r|).divisor_add_const₁ a this
clear this
simp [G]
theorem Nevanlinna_counting₀

View File

@ -273,6 +273,55 @@ theorem MeromorphicOn.divisor_add_const₂
rwa [this] at h
theorem MeromorphicOn.divisor_add_const₃
{f : }
{U : Set }
{z : }
(hf : MeromorphicOn f U)
(a : ) :
hf.divisor z < 0 → (hf.add (MeromorphicOn.const a)).divisor z = hf.divisor z := by
intro h
by_cases hz : z ∉ U
· have : hf.divisor z = 0 := by
unfold MeromorphicOn.divisor
simp [hz]
rw [this] at h
tauto
simp at hz
unfold MeromorphicOn.divisor
simp [hz]
unfold MeromorphicOn.divisor at h
simp [hz] at h
have : (hf z hz).order = (((hf.add (MeromorphicOn.const a))) z hz).order := by
have t₀ : (hf z hz).order < (0 : ) := by
by_contra hCon
simp only [not_lt] at hCon
rw [←WithTop.le_untop'_iff (b := 0)] at hCon
exact Lean.Omega.Int.le_lt_asymm hCon h
tauto
rw [← MeromorphicAt.order_add_of_ne_orders (hf z hz) (MeromorphicAt.const a z)]
simp
by_cases ha: (MeromorphicAt.const a z).order =
· simp [ha]
· calc (hf z hz).order
_ ≤ 0 := by exact le_of_lt t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
apply ne_of_lt
calc (hf z hz).order
_ < 0 := by exact t₀
_ ≤ (MeromorphicAt.const a z).order := by
apply AnalyticAt.meromorphicAt_order_nonneg
exact analyticAt_const
rw [this]
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
{f : }
{U : Set }