Working…
This commit is contained in:
parent
e7320231e9
commit
054edd49a7
@ -67,16 +67,32 @@ theorem Nevanlinna_counting₁₁
|
|||||||
simp [h']
|
simp [h']
|
||||||
clear h'
|
clear h'
|
||||||
|
|
||||||
|
have A := (hf.restrict |r|).divisor_add_const₂ a h
|
||||||
|
have A' : 0 ≤ -((MeromorphicOn.add (MeromorphicOn.restrict hf |r|) (MeromorphicOn.const a)).divisor x) := by
|
||||||
|
apply Int.le_neg_of_le_neg
|
||||||
|
simp
|
||||||
|
exact Int.le_of_lt A
|
||||||
|
simp [A']
|
||||||
|
clear A A'
|
||||||
|
|
||||||
|
exact (hf.restrict |r|).divisor_add_const₃ a h
|
||||||
|
--
|
||||||
simp [h]
|
intro x
|
||||||
|
contrapose
|
||||||
linarith
|
simp
|
||||||
|
intro hx
|
||||||
|
rw [hx]
|
||||||
|
tauto
|
||||||
sorry
|
--
|
||||||
|
intro x
|
||||||
|
contrapose
|
||||||
|
simp
|
||||||
|
intro hx
|
||||||
|
have : 0 ≤ (hf.restrict |r|).divisor x := by
|
||||||
|
rw [hx]
|
||||||
|
have G := (hf.restrict |r|).divisor_add_const₁ a this
|
||||||
|
clear this
|
||||||
|
simp [G]
|
||||||
|
|
||||||
|
|
||||||
theorem Nevanlinna_counting₀
|
theorem Nevanlinna_counting₀
|
||||||
|
@ -273,6 +273,55 @@ theorem MeromorphicOn.divisor_add_const₂
|
|||||||
rwa [this] at h
|
rwa [this] at h
|
||||||
|
|
||||||
|
|
||||||
|
theorem MeromorphicOn.divisor_add_const₃
|
||||||
|
{f : ℂ → ℂ}
|
||||||
|
{U : Set ℂ}
|
||||||
|
{z : ℂ}
|
||||||
|
(hf : MeromorphicOn f U)
|
||||||
|
(a : ℂ) :
|
||||||
|
hf.divisor z < 0 → (hf.add (MeromorphicOn.const a)).divisor z = hf.divisor z := by
|
||||||
|
intro h
|
||||||
|
|
||||||
|
by_cases hz : z ∉ U
|
||||||
|
· have : hf.divisor z = 0 := by
|
||||||
|
unfold MeromorphicOn.divisor
|
||||||
|
simp [hz]
|
||||||
|
rw [this] at h
|
||||||
|
tauto
|
||||||
|
|
||||||
|
simp at hz
|
||||||
|
unfold MeromorphicOn.divisor
|
||||||
|
simp [hz]
|
||||||
|
unfold MeromorphicOn.divisor at h
|
||||||
|
simp [hz] at h
|
||||||
|
|
||||||
|
have : (hf z hz).order = (((hf.add (MeromorphicOn.const a))) z hz).order := by
|
||||||
|
have t₀ : (hf z hz).order < (0 : ℤ) := by
|
||||||
|
by_contra hCon
|
||||||
|
simp only [not_lt] at hCon
|
||||||
|
rw [←WithTop.le_untop'_iff (b := 0)] at hCon
|
||||||
|
exact Lean.Omega.Int.le_lt_asymm hCon h
|
||||||
|
tauto
|
||||||
|
rw [← MeromorphicAt.order_add_of_ne_orders (hf z hz) (MeromorphicAt.const a z)]
|
||||||
|
simp
|
||||||
|
|
||||||
|
by_cases ha: (MeromorphicAt.const a z).order = ⊤
|
||||||
|
· simp [ha]
|
||||||
|
· calc (hf z hz).order
|
||||||
|
_ ≤ 0 := by exact le_of_lt t₀
|
||||||
|
_ ≤ (MeromorphicAt.const a z).order := by
|
||||||
|
apply AnalyticAt.meromorphicAt_order_nonneg
|
||||||
|
exact analyticAt_const
|
||||||
|
|
||||||
|
apply ne_of_lt
|
||||||
|
calc (hf z hz).order
|
||||||
|
_ < 0 := by exact t₀
|
||||||
|
_ ≤ (MeromorphicAt.const a z).order := by
|
||||||
|
apply AnalyticAt.meromorphicAt_order_nonneg
|
||||||
|
exact analyticAt_const
|
||||||
|
rw [this]
|
||||||
|
|
||||||
|
|
||||||
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
theorem MeromorphicOn.divisor_of_makeStronglyMeromorphicOn
|
||||||
{f : ℂ → ℂ}
|
{f : ℂ → ℂ}
|
||||||
{U : Set ℂ}
|
{U : Set ℂ}
|
||||||
|
Loading…
Reference in New Issue
Block a user