working
This commit is contained in:
parent
2e5d008857
commit
03548bc6da
|
@ -337,9 +337,59 @@ theorem primitive_additivity
|
||||||
(R : ℝ)
|
(R : ℝ)
|
||||||
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
(hf : DifferentiableOn ℂ f (Metric.ball z₀ R))
|
||||||
(z₁ : ℂ)
|
(z₁ : ℂ)
|
||||||
(hz₁ : z₁ ∈ Metric.ball z₀ R) :
|
(hz₁ : z₁ ∈ Metric.ball z₀ R)
|
||||||
∀ z ∈ Metric.ball z₁ (R - ‖z₁‖), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
:
|
||||||
intro z _
|
∀ z ∈ Metric.ball z₁ (R - dist z₁ z₀), (primitive z₀ f z) - (primitive z₁ f z) - (primitive z₀ f z₁) = 0 := by
|
||||||
|
intro z hz
|
||||||
|
|
||||||
|
have H : (Set.uIcc z₁.re z.re ×ℂ Set.uIcc z₀.im z₁.im) ⊆ Metric.ball z₀ R := by
|
||||||
|
intro x hx
|
||||||
|
|
||||||
|
have a₀ : x.re ∈ Set.uIcc z₁.re z.re := by exact (Complex.mem_reProdIm.1 hx).1
|
||||||
|
have a₁ : x.im ∈ Set.uIcc z₀.im z₁.im := by exact (Complex.mem_reProdIm.1 hx).2
|
||||||
|
|
||||||
|
|
||||||
|
have A₀ : dist x.re z₀.re ≤ dist x.re z₁.re + dist z₁.re z₀.re := by apply dist_triangle
|
||||||
|
|
||||||
|
have A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by
|
||||||
|
apply Real.dist_right_le_of_mem_uIcc
|
||||||
|
rwa [Set.uIcc_comm]
|
||||||
|
|
||||||
|
have A₂ : dist x.re z₁.re ≤ dist z.re z₁.re := by
|
||||||
|
apply Real.dist_right_le_of_mem_uIcc
|
||||||
|
rwa [Set.uIcc_comm]
|
||||||
|
|
||||||
|
have A₃ : dist z.re z₁.re < R - dist z₁ z₀ := by
|
||||||
|
have : ∀ x₀ x₁ : ℂ, dist x₀.re x₁.re ≤ dist x₀ x₁ := by
|
||||||
|
intro x₀ x₁
|
||||||
|
rw [Complex.dist_eq_re_im, Real.dist_eq]
|
||||||
|
apply Real.le_sqrt_of_sq_le
|
||||||
|
simp
|
||||||
|
exact sq_nonneg (x₀.im - x₁.im)
|
||||||
|
calc dist z.re z₁.re
|
||||||
|
_ ≤ dist z z₁ := by apply this z z₁
|
||||||
|
_ < R - dist z₁ z₀ := by exact hz
|
||||||
|
|
||||||
|
simp
|
||||||
|
|
||||||
|
have B₀ : dist x z₀ ≤ dist x ⟨z₁.re, x.im⟩ + dist ⟨z₁.re, x.im⟩ z₀ := by apply dist_triangle
|
||||||
|
|
||||||
|
have B₁ : dist ⟨z₁.re, x.im⟩ z₀ ≤ dist z₁ z₀ := by
|
||||||
|
rw [Complex.dist_eq_re_im]
|
||||||
|
rw [Complex.dist_eq_re_im]
|
||||||
|
simp
|
||||||
|
apply Real.sqrt_le_sqrt
|
||||||
|
simp
|
||||||
|
exact sq_le_sq.mpr A₁
|
||||||
|
|
||||||
|
calc dist x z₀
|
||||||
|
_ ≤ dist x ⟨z₁.re, x.im⟩ + dist ⟨z₁.re, x.im⟩ z₀ := by apply dist_triangle
|
||||||
|
_ = dist x.re z₁.re + dist ⟨z₁.re, x.im⟩ z₀ := by rw [Complex.dist_of_im_eq]; rfl
|
||||||
|
_ ≤ dist z.re z₁.re + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_le_add_right A₂
|
||||||
|
_ < (R - dist z₁ z₀) + dist ⟨z₁.re, x.im⟩ z₀ := by apply add_lt_add_right A₃
|
||||||
|
_ ≤ (R - dist z₁ z₀) + dist z₁ z₀ := by exact (add_le_add_iff_left (R - dist z₁ z₀)).mpr B₁
|
||||||
|
_ = R := by exact sub_add_cancel R (dist z₁ z₀)
|
||||||
|
|
||||||
|
|
||||||
unfold primitive
|
unfold primitive
|
||||||
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
have : (∫ (x : ℝ) in z₀.re..z.re, f { re := x, im := z₀.im }) = (∫ (x : ℝ) in z₀.re..z₁.re, f { re := x, im := z₀.im }) + (∫ (x : ℝ) in z₁.re..z.re, f { re := x, im := z₀.im }) := by
|
||||||
|
@ -363,9 +413,10 @@ theorem primitive_additivity
|
||||||
apply DifferentiableOn.mono hf
|
apply DifferentiableOn.mono hf
|
||||||
intro x hx
|
intro x hx
|
||||||
simp
|
simp
|
||||||
|
|
||||||
let A₀ : dist x.re z₀.re ≤ dist x.re z₁.re + dist z₁.re z₀.re := by apply dist_triangle
|
let A₀ : dist x.re z₀.re ≤ dist x.re z₁.re + dist z₁.re z₀.re := by apply dist_triangle
|
||||||
|
let A₁ : dist x.im z₀.im ≤ dist z₁.im z₀.im := by sorry
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue