Update partialDeriv.lean
This commit is contained in:
parent
6ea989be6b
commit
005cd10a28
|
@ -93,6 +93,25 @@ lemma partialDeriv_fderiv {f : E → F} (hf : ContDiff 𝕜 2 f) (z a b : E) :
|
||||||
· simp
|
· simp
|
||||||
|
|
||||||
|
|
||||||
|
section restrictScalars
|
||||||
|
|
||||||
|
variable (𝕜 : Type*) [NontriviallyNormedField 𝕜]
|
||||||
|
variable {𝕜' : Type*} [NontriviallyNormedField 𝕜'] [NormedAlgebra 𝕜 𝕜']
|
||||||
|
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace 𝕜 E] [NormedSpace 𝕜' E]
|
||||||
|
variable [IsScalarTower 𝕜 𝕜' E]
|
||||||
|
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace 𝕜 F] [NormedSpace 𝕜' F]
|
||||||
|
variable [IsScalarTower 𝕜 𝕜' F]
|
||||||
|
--variable {f : E → F}
|
||||||
|
|
||||||
|
theorem partialDeriv_restrictScalars {f : E → F} {v : E} :
|
||||||
|
Differentiable 𝕜' f → partialDeriv 𝕜 v f = partialDeriv 𝕜' v f := by
|
||||||
|
intro hf
|
||||||
|
unfold partialDeriv
|
||||||
|
funext x
|
||||||
|
rw [(hf x).fderiv_restrictScalars 𝕜]
|
||||||
|
simp
|
||||||
|
|
||||||
|
|
||||||
theorem partialDeriv_comm
|
theorem partialDeriv_comm
|
||||||
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
{E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E]
|
||||||
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
|
||||||
|
|
Loading…
Reference in New Issue