2024-11-04 13:22:12 +01:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
import Nevanlinna.divisor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
2024-11-07 09:53:34 +01:00
|
|
|
|
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
|
|
|
|
|
|
|
|
|
obtain ⟨n, h⟩ := hf
|
|
|
|
|
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
rcases A with h₁|h₂
|
|
|
|
|
· rw [eventually_nhds_iff] at h₁
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
|
|
|
|
left
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
let A := h₁N y h₁y
|
|
|
|
|
simp at A
|
|
|
|
|
rcases A with h₃|h₄
|
|
|
|
|
· let B := h₃.1
|
|
|
|
|
simp at h₂y
|
|
|
|
|
let C := sub_eq_zero.1 B
|
|
|
|
|
tauto
|
|
|
|
|
· assumption
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂N
|
|
|
|
|
· exact h₃N
|
|
|
|
|
· right
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
rw [eventually_nhdsWithin_iff] at h₂
|
|
|
|
|
rw [eventually_nhds_iff] at h₂
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
by_contra h
|
|
|
|
|
let A := h₁N y h₁y h₂y
|
|
|
|
|
rw [h] at A
|
|
|
|
|
simp at A
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂N
|
|
|
|
|
· exact h₃N
|
2024-11-11 16:50:49 +01:00
|
|
|
|
|
|
|
|
|
theorem MeromorphicAt.order_congr
|
|
|
|
|
{f₁ f₂ : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf₁ : MeromorphicAt f₁ z₀)
|
|
|
|
|
(h : f₁ =ᶠ[𝓝[≠] z₀] f₂):
|
|
|
|
|
hf₁.order = (hf₁.congr h).order := by
|
|
|
|
|
by_cases hord : hf₁.order = ⊤
|
|
|
|
|
· rw [hord, eq_comm]
|
|
|
|
|
rw [hf₁.order_eq_top_iff] at hord
|
|
|
|
|
rw [(hf₁.congr h).order_eq_top_iff]
|
|
|
|
|
exact EventuallyEq.rw hord (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
|
|
|
|
|
· obtain ⟨n, hn : hf₁.order = n⟩ := Option.ne_none_iff_exists'.mp hord
|
|
|
|
|
obtain ⟨g, h₁g, h₂g, h₃g⟩ := (hf₁.order_eq_int_iff n).1 hn
|
|
|
|
|
rw [hn, eq_comm, (hf₁.congr h).order_eq_int_iff]
|
|
|
|
|
use g
|
|
|
|
|
constructor
|
|
|
|
|
· assumption
|
|
|
|
|
· constructor
|
|
|
|
|
· assumption
|
|
|
|
|
· exact EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
|