2024-11-04 13:22:12 +01:00
|
|
|
|
import Mathlib.Analysis.Analytic.Meromorphic
|
|
|
|
|
import Nevanlinna.analyticAt
|
|
|
|
|
import Nevanlinna.divisor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
open scoped Interval Topology
|
|
|
|
|
open Real Filter MeasureTheory intervalIntegral
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
{f : ℂ → ℂ}
|
|
|
|
|
{z₀ : ℂ}
|
|
|
|
|
(hf : MeromorphicAt f z₀) :
|
2024-11-07 09:53:34 +01:00
|
|
|
|
(∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∨ ∀ᶠ (z : ℂ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
|
|
|
|
|
|
|
|
|
|
obtain ⟨n, h⟩ := hf
|
|
|
|
|
let A := h.eventually_eq_zero_or_eventually_ne_zero
|
|
|
|
|
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
rcases A with h₁|h₂
|
|
|
|
|
· rw [eventually_nhds_iff] at h₁
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
|
|
|
|
|
left
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
let A := h₁N y h₁y
|
|
|
|
|
simp at A
|
|
|
|
|
rcases A with h₃|h₄
|
|
|
|
|
· let B := h₃.1
|
|
|
|
|
simp at h₂y
|
|
|
|
|
let C := sub_eq_zero.1 B
|
|
|
|
|
tauto
|
|
|
|
|
· assumption
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂N
|
|
|
|
|
· exact h₃N
|
|
|
|
|
· right
|
|
|
|
|
rw [eventually_nhdsWithin_iff]
|
|
|
|
|
rw [eventually_nhds_iff]
|
|
|
|
|
rw [eventually_nhdsWithin_iff] at h₂
|
|
|
|
|
rw [eventually_nhds_iff] at h₂
|
|
|
|
|
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
|
|
|
|
|
use N
|
|
|
|
|
constructor
|
|
|
|
|
· intro y h₁y h₂y
|
|
|
|
|
by_contra h
|
|
|
|
|
let A := h₁N y h₁y h₂y
|
|
|
|
|
rw [h] at A
|
|
|
|
|
simp at A
|
|
|
|
|
· constructor
|
|
|
|
|
· exact h₂N
|
|
|
|
|
· exact h₃N
|