nevanlinna/Nevanlinna/meromorphicAt.lean

493 lines
16 KiB
Plaintext
Raw Normal View History

2024-11-04 13:22:12 +01:00
import Mathlib.Analysis.Analytic.Meromorphic
import Nevanlinna.analyticAt
import Nevanlinna.divisor
open scoped Interval Topology
open Real Filter MeasureTheory intervalIntegral
2024-11-14 13:47:24 +01:00
theorem meromorphicAt_congr
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
2025-01-03 10:38:06 +01:00
(h : f =ᶠ[𝓝[≠] x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
2024-11-14 13:47:24 +01:00
⟨fun hf ↦ hf.congr h, fun hg ↦ hg.congr h.symm⟩
theorem meromorphicAt_congr'
{𝕜 : Type u_1} [NontriviallyNormedField 𝕜]
{E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E]
{f : 𝕜 → E} {g : 𝕜 → E} {x : 𝕜}
(h : f =ᶠ[nhds x] g) : MeromorphicAt f x ↔ MeromorphicAt g x :=
meromorphicAt_congr (Filter.EventuallyEq.filter_mono h nhdsWithin_le_nhds)
2024-11-04 13:22:12 +01:00
theorem MeromorphicAt.eventually_eq_zero_or_eventually_ne_zero
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
2024-11-07 09:53:34 +01:00
(∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = 0) ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z ≠ 0 := by
obtain ⟨n, h⟩ := hf
let A := h.eventually_eq_zero_or_eventually_ne_zero
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rcases A with h₁|h₂
· rw [eventually_nhds_iff] at h₁
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₁
left
use N
constructor
· intro y h₁y h₂y
let A := h₁N y h₁y
simp at A
rcases A with h₃|h₄
· let B := h₃.1
simp at h₂y
let C := sub_eq_zero.1 B
tauto
· assumption
· constructor
· exact h₂N
· exact h₃N
· right
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₂
rw [eventually_nhds_iff] at h₂
obtain ⟨N, h₁N, h₂N, h₃N⟩ := h₂
use N
constructor
· intro y h₁y h₂y
by_contra h
let A := h₁N y h₁y h₂y
rw [h] at A
simp at A
· constructor
· exact h₂N
· exact h₃N
2024-11-11 16:50:49 +01:00
2024-11-14 13:47:24 +01:00
2024-11-11 16:50:49 +01:00
theorem MeromorphicAt.order_congr
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(h : f₁ =ᶠ[𝓝[≠] z₀] f₂):
hf₁.order = (hf₁.congr h).order := by
by_cases hord : hf₁.order =
· rw [hord, eq_comm]
rw [hf₁.order_eq_top_iff] at hord
rw [(hf₁.congr h).order_eq_top_iff]
exact EventuallyEq.rw hord (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
· obtain ⟨n, hn : hf₁.order = n⟩ := Option.ne_none_iff_exists'.mp hord
obtain ⟨g, h₁g, h₂g, h₃g⟩ := (hf₁.order_eq_int_iff n).1 hn
rw [hn, eq_comm, (hf₁.congr h).order_eq_int_iff]
use g
constructor
· assumption
· constructor
· assumption
· exact EventuallyEq.rw h₃g (fun x => Eq (f₂ x)) (_root_.id (EventuallyEq.symm h))
2024-11-14 13:47:24 +01:00
theorem MeromorphicAt.order_mul
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(hf₂ : MeromorphicAt f₂ z₀) :
(hf₁.mul hf₂).order = hf₁.order + hf₂.order := by
by_cases h₂f₁ : hf₁.order =
· simp [h₂f₁]
rw [hf₁.order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff] at h₂f₁
rw [(hf₁.mul hf₂).order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₁
use t
constructor
· intro y h₁y h₂y
simp; left
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
· by_cases h₂f₂ : hf₂.order =
· simp [h₂f₂]
rw [hf₂.order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff] at h₂f₂
rw [(hf₁.mul hf₂).order_eq_top_iff, eventually_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f₂
use t
constructor
· intro y h₁y h₂y
simp; right
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
· have h₃f₁ := Eq.symm (WithTop.coe_untop hf₁.order h₂f₁)
have h₃f₂ := Eq.symm (WithTop.coe_untop hf₂.order h₂f₂)
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := (hf₁.order_eq_int_iff (hf₁.order.untop h₂f₁)).1 h₃f₁
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := (hf₂.order_eq_int_iff (hf₂.order.untop h₂f₂)).1 h₃f₂
rw [h₃f₁, h₃f₂, ← WithTop.coe_add]
rw [MeromorphicAt.order_eq_int_iff]
use g₁ * g₂
constructor
· exact AnalyticAt.mul h₁g₁ h₁g₂
· constructor
· simp; tauto
· obtain ⟨t₁, h₁t₁, h₂t₁, h₃t₁⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₃g₁)
obtain ⟨t₂, h₁t₂, h₂t₂, h₃t₂⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 h₃g₂)
rw [eventually_nhdsWithin_iff, eventually_nhds_iff]
use t₁ ∩ t₂
constructor
· intro y h₁y h₂y
simp
rw [h₁t₁ y h₁y.1 h₂y, h₁t₂ y h₁y.2 h₂y]
simp
rw [zpow_add' (by left; exact sub_ne_zero_of_ne h₂y)]
group
· constructor
· exact IsOpen.inter h₂t₁ h₂t₂
· exact Set.mem_inter h₃t₁ h₃t₂
2024-11-19 08:45:20 +01:00
2024-12-20 08:16:22 +01:00
theorem MeromorphicAt.order_neg_zero_iff
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
hf.order ≠ ↔ ∃ (g : ), AnalyticAt g z₀ ∧ g z₀ ≠ 0 ∧ ∀ᶠ (z : ) in nhdsWithin z₀ {z₀}ᶜ, f z = (z - z₀) ^ (hf.order.untop' 0) • g z := by
constructor
· intro h
exact (hf.order_eq_int_iff (hf.order.untop' 0)).1 (Eq.symm (untop'_of_ne_top h))
· rw [← hf.order_eq_int_iff]
intro h
exact Option.ne_none_iff_exists'.mpr ⟨hf.order.untop' 0, h⟩
theorem MeromorphicAt.order_inv
{f : }
{z₀ : }
(hf : MeromorphicAt f z₀) :
hf.order = -hf.inv.order := by
by_cases h₂f : hf.order =
· simp [h₂f]
have : hf.inv.order = := by
rw [hf.inv.order_eq_top_iff]
rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [hf.order_eq_top_iff] at h₂f
rw [eventually_nhdsWithin_iff] at h₂f
rw [eventually_nhds_iff] at h₂f
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₂f
use t
constructor
· intro y h₁y h₂y
simp
rw [h₁t y h₁y h₂y]
· exact ⟨h₂t, h₃t⟩
rw [this]
simp
· have : hf.order = hf.order.untop' 0 := by
simp [h₂f, untop'_of_ne_top]
rw [this]
rw [eq_comm]
rw [neg_eq_iff_eq_neg]
apply (hf.inv.order_eq_int_iff (-hf.order.untop' 0)).2
rw [hf.order_eq_int_iff] at this
obtain ⟨g, h₁g, h₂g, h₃g⟩ := this
use g⁻¹
constructor
· exact AnalyticAt.inv h₁g h₂g
· constructor
· simp [h₂g]
· rw [eventually_nhdsWithin_iff]
rw [eventually_nhds_iff]
rw [eventually_nhdsWithin_iff] at h₃g
rw [eventually_nhds_iff] at h₃g
obtain ⟨t, h₁t, h₂t, h₃t⟩ := h₃g
use t
constructor
· intro y h₁y h₂y
simp
let A := h₁t y h₁y h₂y
rw [A]
simp
rw [mul_comm]
· exact ⟨h₂t, h₃t⟩
2024-12-21 07:04:13 +01:00
theorem AnalyticAt.meromorphicAt_order_nonneg
{f : }
{z₀ : }
(hf : AnalyticAt f z₀) :
0 ≤ hf.meromorphicAt.order := by
rw [hf.meromorphicAt_order]
rw [(by rfl : (0 : WithTop ) = WithTop.map Nat.cast (0 : ℕ∞))]
2025-01-01 20:40:43 +01:00
erw [WithTop.map_le_iff]
2024-12-21 07:04:13 +01:00
simp; simp
theorem MeromorphicAt.order_add
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(hf₂ : MeromorphicAt f₂ z₀) :
2024-12-21 11:53:04 +01:00
min hf₁.order hf₂.order ≤ (hf₁.add hf₂).order := by
2024-12-21 07:04:13 +01:00
-- Handle the trivial cases where one of the orders equals
by_cases h₂f₁: hf₁.order =
· rw [h₂f₁]; simp
rw [hf₁.order_eq_top_iff] at h₂f₁
have h : f₁ + f₂ =ᶠ[𝓝[≠] z₀] f₂ := by
2024-12-21 11:53:04 +01:00
-- Optimize this, here an elsewhere
2024-12-21 07:04:13 +01:00
rw [eventuallyEq_nhdsWithin_iff, eventually_iff_exists_mem]
rw [eventually_nhdsWithin_iff, eventually_iff_exists_mem] at h₂f₁
obtain ⟨v, hv⟩ := h₂f₁
use v; simp; trivial
rw [(hf₁.add hf₂).order_congr h]
by_cases h₂f₂: hf₂.order =
· rw [h₂f₂]; simp
rw [hf₂.order_eq_top_iff] at h₂f₂
have h : f₁ + f₂ =ᶠ[𝓝[≠] z₀] f₁ := by
rw [eventuallyEq_nhdsWithin_iff, eventually_iff_exists_mem]
rw [eventually_nhdsWithin_iff, eventually_iff_exists_mem] at h₂f₂
obtain ⟨v, hv⟩ := h₂f₂
use v; simp; trivial
rw [(hf₁.add hf₂).order_congr h]
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := hf₁.order_neg_zero_iff.1 h₂f₁
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := hf₂.order_neg_zero_iff.1 h₂f₂
let n₁ := WithTop.untop' 0 hf₁.order
2024-12-21 11:53:04 +01:00
let n₂ := WithTop.untop' 0 hf₂.order
2024-12-21 07:04:13 +01:00
let n := min n₁ n₂
have h₁n₁ : 0 ≤ n₁ - n := by
rw [sub_nonneg]
exact Int.min_le_left n₁ n₂
have h₁n₂ : 0 ≤ n₂ - n := by
rw [sub_nonneg]
exact Int.min_le_right n₁ n₂
let g := (fun z ↦ (z - z₀) ^ (n₁ - n)) * g₁ + (fun z ↦ (z - z₀) ^ (n₂ - n)) * g₂
have h₁g : AnalyticAt g z₀ := by
apply AnalyticAt.add
apply AnalyticAt.mul
apply AnalyticAt.zpow_nonneg _ h₁n₁
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
exact h₁g₁
apply AnalyticAt.mul
2024-12-21 11:53:04 +01:00
apply AnalyticAt.zpow_nonneg _ h₁n₂
2024-12-21 07:04:13 +01:00
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
exact h₁g₂
have h₂g : 0 ≤ h₁g.meromorphicAt.order := h₁g.meromorphicAt_order_nonneg
have : f₁ + f₂ =ᶠ[𝓝[≠] z₀] (fun z ↦ (z - z₀) ^ n) * g := by
2024-12-21 11:53:04 +01:00
rw [eventuallyEq_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, ht⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 (h₃g₁.and h₃g₂))
use t
simp [ht]
intro y h₁y h₂y
rw [(ht.1 y h₁y h₂y).1, (ht.1 y h₁y h₂y).2]
unfold g; simp; rw [mul_add]
repeat rw [←mul_assoc, ← zpow_add' (by left; exact (sub_ne_zero_of_ne h₂y))]
simp
2024-12-21 07:04:13 +01:00
rw [(hf₁.add hf₂).order_congr this]
have t₀ : MeromorphicAt (fun z ↦ (z - z₀) ^ n) z₀ := by
2024-12-21 11:53:04 +01:00
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
apply MeromorphicAt.id
apply MeromorphicAt.const
2024-12-21 07:04:13 +01:00
rw [t₀.order_mul h₁g.meromorphicAt]
have t₁ : t₀.order = n := by
2024-12-21 11:53:04 +01:00
rw [t₀.order_eq_int_iff]
use 1
constructor
· apply analyticAt_const
· simp
2024-12-21 07:04:13 +01:00
rw [t₁]
2024-12-21 11:53:04 +01:00
unfold n n₁ n₂
have : hf₁.order ⊓ hf₂.order = (WithTop.untop' 0 hf₁.order ⊓ WithTop.untop' 0 hf₂.order) := by
rw [←untop'_of_ne_top (d := 0) h₂f₁, ←untop'_of_ne_top (d := 0) h₂f₂]
simp
rw [this]
exact le_add_of_nonneg_right h₂g
2024-12-21 07:04:13 +01:00
theorem MeromorphicAt.order_add_of_ne_orders
{f₁ f₂ : }
{z₀ : }
(hf₁ : MeromorphicAt f₁ z₀)
(hf₂ : MeromorphicAt f₂ z₀)
(hf₁₂ : hf₁.order ≠ hf₂.order) :
2024-12-21 11:53:04 +01:00
min hf₁.order hf₂.order = (hf₁.add hf₂).order := by
-- Handle the trivial cases where one of the orders equals
by_cases h₂f₁: hf₁.order =
· rw [h₂f₁]; simp
rw [hf₁.order_eq_top_iff] at h₂f₁
have h : f₁ + f₂ =ᶠ[𝓝[≠] z₀] f₂ := by
-- Optimize this, here an elsewhere
rw [eventuallyEq_nhdsWithin_iff, eventually_iff_exists_mem]
rw [eventually_nhdsWithin_iff, eventually_iff_exists_mem] at h₂f₁
obtain ⟨v, hv⟩ := h₂f₁
use v; simp; trivial
rw [(hf₁.add hf₂).order_congr h]
by_cases h₂f₂: hf₂.order =
· rw [h₂f₂]; simp
rw [hf₂.order_eq_top_iff] at h₂f₂
have h : f₁ + f₂ =ᶠ[𝓝[≠] z₀] f₁ := by
rw [eventuallyEq_nhdsWithin_iff, eventually_iff_exists_mem]
rw [eventually_nhdsWithin_iff, eventually_iff_exists_mem] at h₂f₂
obtain ⟨v, hv⟩ := h₂f₂
use v; simp; trivial
rw [(hf₁.add hf₂).order_congr h]
obtain ⟨g₁, h₁g₁, h₂g₁, h₃g₁⟩ := hf₁.order_neg_zero_iff.1 h₂f₁
obtain ⟨g₂, h₁g₂, h₂g₂, h₃g₂⟩ := hf₂.order_neg_zero_iff.1 h₂f₂
let n₁ := WithTop.untop' 0 hf₁.order
let n₂ := WithTop.untop' 0 hf₂.order
have hn₁₂ : n₁ ≠ n₂ := by
unfold n₁ n₂
let A := WithTop.untop'_eq_untop'_iff (d := 0) (x := hf₁.order) (y := hf₂.order)
let B := A.not
simp
rw [B]
push_neg
constructor
· assumption
· tauto
let n := min n₁ n₂
have h₁n₁ : 0 ≤ n₁ - n := by
rw [sub_nonneg]
exact Int.min_le_left n₁ n₂
have h₁n₂ : 0 ≤ n₂ - n := by
rw [sub_nonneg]
exact Int.min_le_right n₁ n₂
let g := (fun z ↦ (z - z₀) ^ (n₁ - n)) * g₁ + (fun z ↦ (z - z₀) ^ (n₂ - n)) * g₂
have h₁g : AnalyticAt g z₀ := by
apply AnalyticAt.add
apply AnalyticAt.mul
apply AnalyticAt.zpow_nonneg _ h₁n₁
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
exact h₁g₁
apply AnalyticAt.mul
apply AnalyticAt.zpow_nonneg _ h₁n₂
apply AnalyticAt.sub
apply analyticAt_id
apply analyticAt_const
exact h₁g₂
have h₂g : 0 ≤ h₁g.meromorphicAt.order := h₁g.meromorphicAt_order_nonneg
have h₂'g : g z₀ ≠ 0 := by
unfold g
simp
have : n = n₁ n = n₂ := by
unfold n
simp
by_cases h : n₁ ≤ n₂
· left; assumption
· right
simp at h
exact le_of_lt h
rcases this with h|h
· rw [h]
have : n₂ - n₁ ≠ 0 := by
rw [sub_ne_zero, ne_comm]
apply hn₁₂
have : (0 : ) ^ (n₂ - n₁) = 0 := by
rwa [zpow_eq_zero_iff]
simp [this]
exact h₂g₁
· rw [h]
have : n₁ - n₂ ≠ 0 := by
rw [sub_ne_zero]
apply hn₁₂
have : (0 : ) ^ (n₁ - n₂) = 0 := by
rwa [zpow_eq_zero_iff]
simp [this]
exact h₂g₂
have h₃g : h₁g.meromorphicAt.order = 0 := by
let A := h₁g.meromorphicAt_order
let B := h₁g.order_eq_zero_iff.2 h₂'g
rw [B] at A
simpa
have : f₁ + f₂ =ᶠ[𝓝[≠] z₀] (fun z ↦ (z - z₀) ^ n) * g := by
rw [eventuallyEq_nhdsWithin_iff, eventually_nhds_iff]
obtain ⟨t, ht⟩ := eventually_nhds_iff.1 (eventually_nhdsWithin_iff.1 (h₃g₁.and h₃g₂))
use t
simp [ht]
intro y h₁y h₂y
rw [(ht.1 y h₁y h₂y).1, (ht.1 y h₁y h₂y).2]
unfold g; simp; rw [mul_add]
repeat rw [←mul_assoc, ← zpow_add' (by left; exact (sub_ne_zero_of_ne h₂y))]
simp
rw [(hf₁.add hf₂).order_congr this]
have t₀ : MeromorphicAt (fun z ↦ (z - z₀) ^ n) z₀ := by
apply MeromorphicAt.zpow
apply MeromorphicAt.sub
apply MeromorphicAt.id
apply MeromorphicAt.const
rw [t₀.order_mul h₁g.meromorphicAt]
have t₁ : t₀.order = n := by
rw [t₀.order_eq_int_iff]
use 1
constructor
· apply analyticAt_const
· simp
rw [t₁]
unfold n n₁ n₂
have : hf₁.order ⊓ hf₂.order = (WithTop.untop' 0 hf₁.order ⊓ WithTop.untop' 0 hf₂.order) := by
rw [←untop'_of_ne_top (d := 0) h₂f₁, ←untop'_of_ne_top (d := 0) h₂f₂]
simp
rw [this, h₃g]
simp
2024-12-20 08:16:22 +01:00
2025-01-03 10:38:06 +01:00
-- Might want to think about adding an analytic function instead of a constant
theorem MeromorphicAt.order_add_const
--have {z : } : 0 < (hf z trivial).order → (hf z trivial).order = ((hf.add (MeromorphicOn.const a)) z trivial).order:= by
{f : }
{z a : }
(hf : MeromorphicAt f z) :
hf.order < 0 → hf.order = (hf.add (MeromorphicAt.const a z)).order := by
intro h
by_cases ha: a = 0
· -- might want theorem MeromorphicAt.order_const
have : (MeromorphicAt.const a z).order = := by
rw [MeromorphicAt.order_eq_top_iff]
rw [ha]
simp
rw [←hf.order_add_of_ne_orders (MeromorphicAt.const a z)]
rw [this]
simp
rw [this]
exact LT.lt.ne_top h
· have : (MeromorphicAt.const a z).order = (0 : ) := by
rw [MeromorphicAt.order_eq_int_iff]
use fun _ ↦ a
constructor
· exact analyticAt_const
· simpa
rw [←hf.order_add_of_ne_orders (MeromorphicAt.const a z)]
rw [this]
simp
exact le_of_lt h
rw [this]
exact ne_of_lt h
2024-11-19 08:45:20 +01:00
-- might want theorem MeromorphicAt.order_zpow